Measurement and analysis of ionic leakage profiles in refrigerated human red blood cells using dielectrophoresis and inductively coupled mass spectroscopy

Author:

Lavi Edwin D.1ORCID,Gagnon Zachary1ORCID

Affiliation:

1. Department of Chemical Engineering Texas A&M University College Station Texas USA

Abstract

AbstractHuman red blood cells (RBCs) undergo ionic leakage through passive diffusion during refrigerated storage, affecting their quality and health. We investigated the dynamics of ionic leakage in human RBCs over a 20‐day refrigerated storage period using extracellular ion quantification and dielectrophoresis (DEP). Four type O− human blood donors were examined to assess the relationship between extracellular ion concentrations (Na+, K+, Mg2+, Ca2+, and Fe2+), RBC cytoplasm conductivity, and membrane conductance. A consistent negative correlation between RBC cytoplasm conductivity and membrane conductance, termed the “ionic leakage profile” (ILP), was observed across the 20‐day storage period. Specifically, we noted a gradual decline in DEP‐measured RBC cytoplasm conductivity alongside an increase in membrane conductance. Further examination of the electrical origins of this ILP using inductively coupled plasma mass spectrometry revealed a relative decrease in extracellular Na+ concentration and an increase in K+ concentration over the storage period. Correlation of these extracellular ion concentrations with DEP‐measured RBC electrical properties demonstrated a direct link between changes in the cytoplasmic and membrane domains and the leakage and transport of K+ and Na+ ions across the cell membrane. Our analysis suggests that the inverse correlation between RBC cytoplasm and membrane conductance is primarily driven by the passive diffusion of K+ from the cytoplasm and the concurrent diffusion of Na+ from the extracellular buffer into the membrane, resulting in a conductive reduction in the cytoplasmic domain and a subsequent increase in the membrane. The ILP's consistent negative trend across all donors suggests that it could serve as a metric for quantifying blood bank storage age, predicting the quality and health of refrigerated RBCs.

Funder

World Anti-Doping Agency

Partnership for Clean Competition

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3