A bioinspired approach for the modulation of electroosmotic flow and protein–surface interactions in capillary electrophoresis using silylated amino‐amides blocks and covalent grafting

Author:

Gouyon Jérémie1ORCID,Clavié Margaux1,Raquel Gutiérrez‐Climente1,Ngo Giang2,Dumy Pascal1,Etienne Pascal3,Martineau Pierre2,Pugnière Martine2,Ahmad Mehdi4,Subra Gilles1,Perrin Catherine1ORCID,Ladner Yoann1ORCID

Affiliation:

1. IBMM CNRS ENSCM University of Montpellier Montpellier France

2. IRCM INSERM U1194 University of Montpellier Montpellier France

3. l2C CNRS UMR 5221 University of Montpellier Montpellier France

4. ICGM CNRS ENSCM University of Montpellier Montpellier France

Abstract

AbstractWe explore a bioinspired approach to design tailored functionalized capillary electrophoresis (CE) surfaces based on covalent grafting for biomolecules analysis. First, the approach aims to overcome well‐known common obstacles in CE protein analysis affecting considerably the CE performance (asymmetry, resolution, and repeatability) such as the unspecific adsorption on fused silica surface and the lack of control of electroosmotic flow (EOF). Then, our approach, which relies on new amino‐amide mimic hybrid precursors synthesized by silylation of amino‐amides (Si–AA) derivatives with 3‐isocyanatopropyltriethoxysilane, aims to recapitulate the diversity of protein–protein interactions (π–π stacking, ionic, Van der Waals…) found in physiological condition (bioinspired approach) to improve the performance of CE protein analysis (electrochromatography). As a proof of concept, these silylated Si–AA (tyrosinamide silylation, serinamide silylation, argininamide silylation, leucinamide silylation, and isoglutamine silylation acid) have been covalently grafted in physiological conditions in different amount on bare fused silica capillary giving rise to a biomimetic coating and allowing both the modulation of EOF and protein–surface interactions. The analytical performances of amino‐amide functionalized capillaries were assessed using lysozyme, cytochrome C and ribonuclease A and compared to traditional capillary coatings poly(ethylene oxide), poly(diallyldimethylammonium chloride), and sodium poly(styrenesulfonate). EOF, protein adsorption rate, protein retention factor k, and selectivity were determined for each coating. All results obtained showed this approach allowed to modulate the EOF, reduce unspecific adsorption, and generate specific interactions with proteins by varying the nature and the amount of Si–AA in the functionalization mixture.

Funder

Agence Nationale de la Recherche

Publisher

Wiley

Subject

Clinical Biochemistry,Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3