Robust stochastic optimization of needle configurations for robotic HDR prostate brachytherapy

Author:

Gerlach Stefan1,Siebert Frank‐André2,Schlaefer Alexander1

Affiliation:

1. Institute of Medical Technology and Intelligent Systems Hamburg University of Technology Hamburg Germany

2. Department of Radiation Oncology Karl‐Lennert‐Krebscentrum Nord University Medical Center Schleswig‐Holstein, Campus Kiel Kiel Germany

Abstract

AbstractBackgroundIdeally, inverse planning for HDR brachytherapy (BT) should include the pose of the needles which define the trajectory of the source. This would be particularly interesting when considering the additional freedom and accuracy in needle pose which robotic needle placement enables. However, needle insertion typically leads to tissue deformation, resulting in uncertainty regarding the actual pose of the needles with respect to the tissue.PurposeTo efficiently address uncertainty during inverse planning for HDR BT in order to robustly optimize the pose of the needles before insertion, that is, to facilitate path planning for robotic needle placement.MethodsWe use a form of stochastic linear programming to model the inverse treatment planning problem. To account for uncertainty, we consider random tissue displacements at the needle tip to simulate tissue deformation. Conventionally for stochastic linear programming, each simulated deformation is reflected by an addition to the linear programming problem which increases problem size and computational complexity substantially and leads to impractical runtime. We propose two efficient approaches for stochastic linear programming. First, we consider averaging dose coefficients to reduce the problem size. Second, we study weighting of the slack variables of an adjusted linear problem to approximate the full stochastic linear program. We compare different approaches to optimize the needle configurations and evaluate their robustness with respect to different amounts of tissue deformation.ResultsOur results illustrate that stochastic planning can improve the robustness of the treatment with respect to deformation. The proposed approaches approximating stochastic linear programming better conform to the tissue deformation compared to conventional linear programming. They show good correlation with the plans computed after deformation while reducing the runtime by two orders of magnitude compared to the complete stochastic linear program. Robust optimization of needle configurations takes on average 59.42 s. Skew needle configurations lead to mean coverage improvements compared to parallel needles from 0.39 to 2.94 percentage points, when 8 mm tissue deformation is considered. Considering tissue deformations from 4  to 10 mm during planning with weighted stochastic optimization and skew needles generally results in improved mean coverage from 1.77 to 4.21 percentage points.ConclusionsWe show that efficient stochastic optimization allows selecting needle configurations which are more robust with respect to potentially negative effects of target deformation and displacement on the achievable prescription dose coverage. The approach facilitates robust path planning for robotic needle placement.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3