Volitional inspiration is mediated by two independent output channels in the primary motor cortex

Author:

Helou Leah B.1ORCID,Dum Richard P.2

Affiliation:

1. Department of Communication Science and Disorders University of Pittsburgh Pittsburgh Pennsylvania USA

2. Department of Neurobiology University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA

Abstract

AbstractThe diaphragm is a multifunctional muscle that mediates both autonomic and volitional inspiration. It is critically involved in vocalization, postural stability, and expulsive core–trunk functions, such as coughing, hiccups, and vomiting. In macaque monkeys, we used retrograde transneuronal transport of rabies virus injected into the left hemidiaphragm to identify cortical neurons that have multisynaptic connections with phrenic motoneurons. Our research demonstrates that representation of the diaphragm in the primary motor cortex (M1) is split into two spatially separate and independent sites. No cortico–cortical connections are known to exist between these two sites. One site is located dorsal to the arm representation within the central sulcus and the second site is lateral to the arm. The dual representation of the diaphragm warrants a revision to the somatotopic map of M1. The dorsal diaphragm representation overlaps with trunk and axial musculature. It is ideally situated to coordinate with these muscles during volitional inspiration and in producing intra‐abdominal pressure gradients. The lateral site overlaps the origin of M1 projections to a laryngeal muscle, the cricothyroid. This observation suggests that the coordinated control of laryngeal muscles and the diaphragm during vocalization may be achieved, in part, by co‐localization of their representations in M1. The neural organization of the two diaphragm sites underlies a new perspective for interpreting functional imaging studies of respiration and/or vocalization. Furthermore, our results provide novel evidence supporting the concept that overlapping output channels within M1 are a prerequisite for the formation of muscle synergies underlying fine motor control.

Funder

Pennsylvania Department of Health

National Institutes of Health

Publisher

Wiley

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3