Impact of body position on hemodynamic measurements during exercise: A tale of two bikes

Author:

Kirupaharan Pradhab1ORCID,Lane James1,Melillo Celia1,Paul Deborah1,Amoushref Alla2,Abdi Sami Al3,Tonelli Adriano R.1

Affiliation:

1. Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute Cleveland Clinic Cleveland Ohio USA

2. Department of Nephrology, Glickman Urological & Kidney Institute Cleveland Clinic Cleveland Ohio USA

3. Department of Internal Medicine Cleveland Clinic Fairview Hospital Fairview Ohio USA

Abstract

AbstractThe addition of exercise testing during right heart catheterization (RHC) is often required to accurately diagnose causes of exercise intolerance like early pulmonary vascular disease, occult left heart disease, and preload insufficiency. We tested the influence of body position (supine vs. seated) on hemodynamic classification both at rest and during exercise. We enrolled patients with exercise intolerance due to dyspnea who were referred for exercise RHC at the Cleveland Clinic. Patients were randomized (1:1) to exercise in seated or supine position to a goal of 60 W followed by maximal exercise in the alternate position. We analyzed 17 patients aged 60.3 ± 10.9 years, including 13 females. At rest in the sitting position, patients had significantly lower right atrial pressure (RAP), mean pulmonary artery pressure (mPAP), pulmonary artery wedge pressure (PAWP) and cardiac index (CI). In every stage of exercise (20, 40, and 60 W), the RAP, mPAP, and PAWP were lower in the sitting position. Exercise in the sitting position allowed the identification of preload insufficiency in nine patients. Exercise in either position increased the identification of postcapillary pulmonary hypertension (PH). Body position significantly influences hemodynamics at rest and with exercise; however, mPAP/CO and PAWP/CO were not positionally affected. Hemodynamic measurements in the seated position allowed the detection of preload insufficiency, a condition that was predominantly identified as no PH during supine exercise.

Publisher

Wiley

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3