Recent progress in device designs and dual‐functional photoactive materials for direct solar to electrochemical energy storage

Author:

Zhao Yingying12,Li Jinhang1,Tan Yujie1,Zhu Chunling2,Chen Yujin12

Affiliation:

1. Key Laboratory of In‐Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering Harbin Engineering University Harbin China

2. Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China

Abstract

AbstractEfficient solar energy utilization technologies are expected to promote the development of a carbon‐neutral and renewable energy society. Photovoltaic cells (PVs) have played an important role in the harvest and conversion of solar energy. Due to the intermittent instability of solar energy, however, PVs must be connected with energy storage systems (EESs). Newly developed photoelectrochemical energy storage devices (PESs) are proposed to directly convert solar energy into electrochemical energy. Initial PESs focused on the external and internal integration of PVs and EESs. However, the voltage mismatch between PVs and EESs leads to massive energy loss and unsatisfactory overall performances of PESs. PESs using dual‐functional photoactive materials (PAMs), which have simplified device configuration, decreased costs, and external energy loss, have recently emerged for realization of solar‐to‐electrochemical‐energy conversion and storage in a single device. The review summarizes the designing concepts, integrated configurations, and overall performances of different types of PESs, particularly PESs utilizing dual‐functional PAMs. Based on the classifications, working principles, basic requirements, and design principles, this review discusses various types of PESs cathodes. Finally, some perspectives are provided for further developing excellent performances of PESs.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3