An ocean coupling potential intensity index for tropical cyclones

Author:

Lin I.‐I.12,Black P.3,Price J. F.4,Yang C.‐Y.1,Chen S. S.5,Lien C.‐C.12,Harr P.6,Chi N.‐H.7,Wu C.‐C.1,D'Asaro E. A.7

Affiliation:

1. Department of Atmospheric Sciences National Taiwan University Taipei Taiwan

2. Research Center for Environmental Changes Academia Sinica Taipei Taiwan

3. Science Application International Corporation, Inc and Naval Research Laboratory Monterey California USA

4. Woods Hole Oceanographic Institution Woods Hole Massachusetts USA

5. Rosenstiel School of Marine and Atmospheric Sciences University of Miami Miami Florida USA

6. Naval Postgraduate School Monterey California USA

7. Applied Physics Laboratory University of Washington Seattle Washington USA

Abstract

AbstractTimely and accurate forecasts of tropical cyclones (TCs, i.e., hurricanes and typhoons) are of great importance for risk mitigation. Although in the past two decades there has been steady improvement in track prediction, improvement on intensity prediction is still highly challenging. Cooling of the upper ocean by TC‐induced mixing is an important process that impacts TC intensity. Based on detail in situ air‐deployed ocean and atmospheric measurement pairs collected during the Impact of Typhoons on the Ocean in the Pacific (ITOP) field campaign, we modify the widely used Sea Surface Temperature Potential Intensity (SST_PI) index by including information from the subsurface ocean temperature profile to form a new Ocean coupling Potential Intensity (OC_PI) index. Using OC_PI as a TC maximum intensity predictor and applied to a 14 year (1998–2011) western North Pacific TC archive, OC_PI reduces SST_PI‐based overestimation of archived maximum intensity by more than 50% and increases the correlation of maximum intensity estimation from r2 = 0.08 to 0.31. For slow‐moving TCs that cause the greatest cooling, r2 increases to 0.56 and the root‐mean square error in maximum intensity is 11 m s−1. As OC_PI can more realistically characterize the ocean contribution to TC intensity, it thus serves as an effective new index to improve estimation and prediction of TC maximum intensity.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3