Multiscale physicochemical characterization of a short glass fiber–reinforced polyphenylene sulfide composite under aging and its thermo‐oxidative mechanism

Author:

Zuo Peiyuan1ORCID,Tcharkhtchi Abbas1,Shirinbayan Mohammadali1,Fitoussi Joseph1,Bakir Farid2

Affiliation:

1. PIMM–UMR CNRS 8006 Arts et Métiers ParisTech 75013 Paris France

2. Dynfluid Arts et Métiers ParisTech 75013 Paris France

Abstract

In this paper, the thermo‐oxidation for a short glass fiber–reinforced polyphenylene sulfide (PPS/GF) composite was experimentally and theoretically studied by a wide range of physicochemical and mechanical techniques. The accelerated thermal aging temperatures were fixed at 100°C, 140°C, 160°C, 180°C, and 200°C. Firstly, the results of weight loss under aging indicate the formation of volatile products because of chain scission of end groups. Also, Fourier‐transform infrared spectroscopy (FTIR) results suggest that the formation and accumulation of carbonyl group arising from the formation of hydroperoxides in oxidative propagation process. In all cases of different thermal oxidation temperatures, it is hard to observe some significant change about the concentration of carbonyl group during the induction time. This induction time depends inversely on the oxidation temperature. Moreover, the cross‐linking and chain scissions exist together according to the results of rheological results and it is easier to see the cross‐linking phenomenon at the beginning of oxidation while the chain scissions are more pronounced, with the oxidation process developing further. In aspect of mechanical properties, σmax increases at the beginning of oxidation because of cross‐linking, and subsequently, the σmax always decreases because of thermo‐oxidation of the PPS matrix. In addition, the detailed thermo‐oxidation processes are fully discussed in the end of this study. A mechanistic schema has been proposed to present different oxidation reactions of PPS polymer and then a kinetic model has been extracted from this mechanism. Afterwards, the model has been verified by experimental results at different temperatures.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3