Affiliation:
1. Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry Nankai University Tianjin P.R. China
2. School of Materials Science and Engineering and State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
Abstract
AbstractNatural molecular chaperones utilize spatially ordered multiple molecular forces to effectively regulate protein folding. However, synthesis of such molecules is a big challenge. The concept of “aggregate science” provides insights to construct chemical entities (aggregates) beyond molecular levels to mimic both the structure and function of natural chaperone. Inspired by this concept, herein we fabricate a novel multi‐interaction (i.e., electrostatic and hydrophobic interaction) cooperative nanochaperone (multi‐co‐nChap) to regulating protein folding. This multi‐co‐nChap is fabricated by rationally introducing electrostatic interactions to the surface (corona) and confined hydrophobic microdomains (shell) of traditional single‐hydrophobic interaction nanochaperone. We demonstrate that the corona electrostatic attraction facilitates the diffusion of clients into the hydrophobic microdomains, while the shell electrostatic interaction balances the capture and release of clients. By finely synergizing corona electrostatic attraction with shell electrostatic repulsion and hydrophobic interaction, the optimized multi‐co‐nChap effectively facilitated de novo folding of nascent polypeptides. Moreover, the synergy between corona electrostatic attraction, shell electrostatic attraction and shell hydrophobic interaction significantly enhanced the capability of multi‐co‐nChap to protect native proteins from denaturation at harsh temperatures. This work provides important insights for understanding and design of nanochaperone, which is a kind of ordered aggregate with chaperone‐like activity that beyond the level of single molecule.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
General Medicine,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献