Textual data for electricity load forecasting

Author:

Obst David1ORCID,Claudel Sandra1,Cugliari Jairo2ORCID,Ghattas Badih3,Goude Yannig1,Oppenheim Georges4

Affiliation:

1. EDF R&D Palaiseau France

2. Laboratoire ERIC Université de Lyon 2 Lyon France

3. Aix Marseille School of Economics Aix‐Marseille Université Marseille France

4. Laboratoire d'Analyse et de Mathématiques Appliquées Université Paris‐Est Champs‐sur‐Marne France

Abstract

AbstractTraditional mid‐term electricity forecasting models rely on calendar and meteorological information such as temperature and wind speed to achieve high performance. However depending on such variables has drawbacks, as they may not be informative enough during extreme weather. While ubiquitous, textual sources of information are hardly included in prediction algorithms for time series, despite the relevant information they may contain. In this work, we propose to leverage openly accessible weather reports for electricity demand and meteorological time series prediction problems. Our experiments on French and British load data show that the considered textual sources allow to improve overall accuracy of the reference model, particularly during extreme weather events such as storms or abnormal temperatures. Additionally, we apply our approach to the problem of imputation of missing values in meteorological time series, and we show that our text‐based approach beats standard methods. Furthermore, the influence of words on the time series' predictions can be interpreted for the considered encoding schemes of the text, leading to a greater confidence in our results.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3