IGF2BP3 mediates the mRNA degradation of NF1 to promote triple‐negative breast cancer progression via an m6A‐dependent manner

Author:

Zhang Xu1,Shi Liang1,Sun Han‐Dong1,Wang Zi‐Wen1,Xu Feng1,Wei Ji‐Fu2,Ding Qiang1ORCID

Affiliation:

1. Jiangsu Breast Disease Center The First Affiliated Hospital with Nanjing Medical University Nanjing China

2. Department of Pharmacy Jiangsu Cancer Hospital The Affiliated Cancer Hospital of Nanjing Medical University Jiangsu Institute of Cancer Research Nanjing China

Abstract

AbstractBackgroundN6‐methyladenosine (m6A) is an abundant reversible modification in eukaryotic mRNAs. Emerging evidences indicate that m6A modification plays a vital role in tumourigenesis. As a crucial reader of m6A, IGF2BP3 usually mediates the stabilisation of mRNAs via an m6A‐dependent manner. But the underlying mechanism of IGF2BP3 in the tumourigenesis of triple‐negative breast cancer (TNBC) is unclear.MethodsTCGA cohorts were analysed for IGF2BP3 expression and IGF2BP3 promoter methylation levels in different breast cancer subtypes. Colony formation, flow cytometry assays and subcutaneous xenograft were performed to identify the phenotype of IGF2BP3 in TNBC. RNA/RNA immunoprecipitation (RIP)/methylated RNA immunoprecipitation (MeRIP) sequencing and luciferase assays were used to certify the target of IGF2BP3 in TNBC cells.ResultsIGF2BP3 was highly expressed in TNBC cell lines and tissues. TET3‐mediated IGF2BP3 promoter hypomethylation led to the upregulation of IGF2BP3. Knocking down IGF2BP3 markedly reduced the proliferation of TNBC in vitro and in vivo. Intersection co‐assays revealed that IGF2BP3 decreased neurofibromin 1 (NF1) stabilisation via an m6A‐dependent manner. NF1 knockdown could rescue the phenotypes of IGF2BP3 knockdown cells partially.ConclusionTET3‐mediated IGF2BP3 accelerated the proliferation of TNBC by destabilising NF1 mRNA via an m6A‐dependent manner. This suggests that IGF2BP3 could be a potential therapeutic target for TNBC.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3