Affiliation:
1. College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
2. Fuli Institute of Food Science Zhejiang University Hangzhou China
3. Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang R&D Center for Food Technology and Equipment Hangzhou China
4. Ningbo Academy of Agricultural Sciences Zhejiang China
Abstract
AbstractBACKGROUNDRoasted fish enjoys great popularity in Asia, but how roasting and subsequent digestion influence the oxidation and proteolysis of fish meat is unknown. This study aimed to investigate the effect of roasting time on lipid and protein oxidation and their evolution and consequence on proteolysis during simulated digestion of fish fillets.RESULTSSeveral oxidation markers (thiobarbituric acid‐reactive substances (TBARS), free thiols, total carbonyls and Schiff bases) were employed to assess the oxidation of fish. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) and the 2,4,6‐trinitrobenzenesulfonic acid (TNBS) assay for free amino groups were used to study the proteolysis during gastrointestinal digestion. The results showed that significant lipid and protein oxidative changes occurring in roasted fish fillets were reinforced after gastric digestion and were much more intense after intestinal digestion. Throughout roasting and digestion, a close interconnection between lipid and protein was also manifested as the levels of total carbonyls and Schiff bases rose while TBARS fell. Furthermore, free amino groups decreased with prolonged roasting time, signifying that protein oxidation before digestion resulted in impaired proteolysis during digestion.CONCLUSIONThis study indicated that the lipid and protein oxidation of fish fillets could be dependent on time of roasting, and the oxidation continued to develop and have an impact on proteolysis during in vitro digestion. © 2018 Society of Chemical Industry
Funder
National Science-technology Support Plan project
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献