Equalizer: Energy‐efficient machine learning‐based heterogeneous cluster load balancer

Author:

Rahmani Taha Abdelazziz12,Belalem Ghalem1,Mahmoudi Sidi Ahmed2ORCID,Merad‐Boudia Omar Rafik1

Affiliation:

1. LIO Laboratory, Department of Computer Science University of Oran1 Oran Algeria

2. FPMs‐ILIA Laboratory, Department of Computer Science University of Umons Mons Belgium

Abstract

SummaryHeterogeneous systems deliver high computing performance when effectively utilized. It is crucial to execute each application on the most suitable device while maintaining system balance. However, achieving equal distribution of the computing load is challenging due to variations in computing power and device architectures within the system. Moreover, scheduling applications at real‐time further complicates this task, as prior information about the submitted applications is absent. In this context, we introduce “Equalizer,” a real‐time load balancer for heterogeneous systems. “Equalizer” leverages machine learning to continuously monitor the system's state, predicting optimal devices for application execution at runtime. It assigns applications to devices that minimize system imbalance. To quantify system imbalance, we propose a novel metric that reflects the disparity in computing loads across the system's devices. This metric is calculated using predicted execution times of applications. To validate the performance of “Equalizer,” we conducted a comparative study against widely adopted approaches, namely Round Robin and Device Suitability. The experiments were performed on a heterogeneous cluster comprising a master host and three slave servers, equipped with a total of 4 central processing units (CPUs) and 4 graphics processing units (GPUs). All approaches were deployed on the cluster and evaluated using three distinct workloads categorized by their computing intensity: medium intensity, heavy intensity, and a combination of heavy and medium intensity, simulating real‐world scenarios. Each workload consisted of a set of 80 OpenCL applications with varying input data sizes. The experimental results demonstrate that “Equalizer” effectively minimized the system's imbalance, reduced the idle time of devices, and eliminated overloads. Moreover, “Equalizer” exhibited significant improvements in workload execution time, resource utilization, throughput, and energy consumption. Across all tested scenarios, “Equalizer” consistently outperformed alternative approaches, showcasing its robustness, adaptability to dynamic environments, and applicability in real‐world practice.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3