Non‐isocyanate polyurethane‐acrylate as UV‐ and thermo‐responsive plasticizer for thermoplastic elastomer

Author:

Lam Ki Yan12,Lee Choy Sin23ORCID,Pichika Mallikarjuna Rao23,Cheng Sit Foon4,Tan Rachel Yie Hang1

Affiliation:

1. School of Postgraduate Studies International Medical University Kuala Lumpur Malaysia

2. Department of Pharmaceutical Chemistry School of Pharmacy, International Medical University Kuala Lumpur Malaysia

3. Centre for Bioactive Molecules and Drug Delivery Institute for Research, Development and Innovation Kuala Lumpur Malaysia

4. Unit of Research on Lipids (URL), Department of Chemistry, Faculty of Science University of Malaya Kuala Lumpur Malaysia

Abstract

AbstractA UV‐ and thermo‐responsive polyurethane‐acrylate prepolymer was synthesized from palm olein (POo) via a non‐isocyanate route. The process included epoxidation of POo, carbonation of epoxidized palm olein (EPOo) into polycyclic carbonate in a solvent‐free and mild condition (100°C, 1 atm), followed by reacting with ethylene diamine and acrylic acid. The chemical structure of the non‐isocyanate polyurethane‐acrylate (NIPUA) prepolymer was elucidated by 1H and 13C nuclear magnetic resonance (NMR) and Fourier transform‐infrared spectroscopy (FTIR), while weight average molecular weight of NIPUA was determined by gel permeation chromatography (GPC). The NIPUA (0–20 wt%) was incorporated with thermoplastic elastomer (TPE) as a plasticizer and cured under UV light and thermal stimulations. The cured NIPUA/TPE films were characterized by FTIR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile strength test. Under UV and thermal stimulations, the NIPUA/TPE demonstrated enhanced tensile properties (elongation at break >1280%, Young's modulus ~25 MPa), thermal properties (lower Tg), lower water contact angle, and shortened curing time as compared with the blank TPE. The 20 wt% NIPUA/TPE films exhibited susceptibility to enzymatic biodegradation and noncytotoxic to HEK 293 cells in vitro, demonstrated it's potential as a UV‐ and thermo‐responsive plasticizer for TPE in manufacturing of medical devices.

Funder

Ministry of Higher Education, Malaysia

Publisher

Wiley

Reference114 articles.

1. Thermoplastic Elastomer Market ‐ Global Industry Assessment & Forecast. Vantage Mark. Res.https://www.vantagemarketresearch.com/industry‐report/thermoplastic‐elastomer‐market‐1947

2. The effects of gas assisted injection molding on the mechanical properties of medical grade thermoplastic elastomers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3