Antiproliferative Noscapinoids Bearing an Amidothiadiazole Scaffold as Apoptosis Inducers: Design, Synthesis and Molecular Docking

Author:

Kumar Pedapati Ravi12,Pragyandipta Pratyush3,Pranathi Abburi Naga12,Chirra Nagaraju12,Kantevari Srinivas12ORCID,Naik Pradeep K.3

Affiliation:

1. Fluoro and Agrochemicals Department CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India

3. Center of Excellence in Natural Products and Therapeutics Department of Biotechnology and Bioinformatics Sambalpur University, Jyoti Vihar, Burla, Sambalpur768 019, Odisha, India

Abstract

AbstractNoscapine an FDA‐approved antitussive agent. With low cytotoxicity with higher concentrations, noscapine and its derivatives have been shown to have exceptional anticancer properties against a variety of cancer cell lines. In order to increase its potency, in this study, we synthesized a series of new amido‐thiadiazol coupled noscapinoids and tested their cytotoxicity in vitro. All of the newly synthesised compounds demonstrated potent cytotoxic potential, with IC50 values ranging from 2.1 to 61.2 μM than the lead molecule, noscapine (IC50 value ranges from 31 to 65.5 μM) across all cell lines, without affecting normal cells (IC50 value is>300 μM). Molecular docking of all these molecules with tubulin (PDB ID: 6Y6D, resolution 2.20 Å) also revealed better binding affinity (docking score range from −5.418 to −9.679 kcal/mol) compared to noscapine (docking score is −5.304 kcal/mol). One of the most promising synthetic derivatives 6aa (IC50 value ranges from 2.5 to 7.3 μM) was found to bind tubulin with the highest binding affinity (ΔGbinding is −28.97 kcal/mol) and induced apoptosis in cancer cells more effectively.

Funder

Indian Council of Medical Research

Publisher

Wiley

Subject

Molecular Biology,Molecular Medicine,General Chemistry,Biochemistry,General Medicine,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3