An optimized live bacterial delivery vehicle safely and efficaciously delivers bacterially transcribed therapeutic nucleic acids

Author:

Mora Darcy S. O.1,Cox Madeline1,Magunda Forgivemore2,Williams Ashley B.1,Linke Lyndsey1ORCID

Affiliation:

1. SiVEC Biotechnologies Fort Collins Colorado USA

2. Department of Microbiology, Immunology and Pathology Colorado State University Fort Collins Colorado USA

Abstract

AbstractThere is an unmet need for delivery platforms that realize the full potential of next‐generation nucleic acid therapeutics. The in vivo usefulness of current delivery systems is limited by numerous weaknesses, including poor targeting specificity, inefficient access to target cell cytoplasm, immune activation, off‐target effects, small therapeutic windows, limited genetic encoding and cargo capacity, and manufacturing challenges. Here we characterize the safety and efficacy of a delivery platform comprising engineered live, tissue‐targeting, non‐pathogenic bacteria (Escherichia coli SVC1) for intracellular cargo delivery. SVC1 bacteria are engineered to specifically bind to epithelial cells via a surface‐expressed targeting ligand, to allow escape of their cargo from the phagosome, and to have minimal immunogenicity. We describe SVC1's ability to deliver short hairpin RNA (shRNA), localized SVC1 administration to various tissues, and its minimal immunogenicity. To validate the therapeutic potential of SVC1, we used it to deliver influenza‐targeting antiviral shRNAs to respiratory tissues in vivo. These data are the first to establish the safety and efficacy of this bacteria‐based delivery platform for use in multiple tissue types and as an antiviral in the mammalian respiratory tract. We expect that this optimized delivery platform will enable a variety of advanced therapeutic approaches.

Publisher

Wiley

Subject

Bioengineering,Environmental Engineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3