Reversible Molecular Capture and Release in Microfluidics by Host–Guest Interactions in Hydrogel Microdots

Author:

Jiao Chen12ORCID,Liubimtsev Nikolai12ORCID,Zagradska‐Paromova Zlata1,Appelhans Dietmar1ORCID,Gaitzsch Jens1ORCID,Voit Brigitte12ORCID

Affiliation:

1. Leibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany

2. Technische Universität Dresden Faculty of Chemistry and Food Chemistry Organic Chemistry of Polymers 01069 Dresden Germany

Abstract

AbstractThe integration of microscopic hydrogels with high specific surface area and physically reactive groups into microfluidic systems for selective molecular interactions is attracting increasing attention. Herein, the reversible capture and release of molecules through host–guest interactions of hydrogel dots in a microfluidic device is reported, which translates the supramolecular chemistry to the microscale conditions under continuous flow. Polyacrylamide (PAAm) hydrogel arrays with grafted β‐cyclodextrin (β‐CD)  modified poly(2‐methyl‐2‐oxazoline) (CD‐PMOXA) chains are fabricated by photopolymerization and integrated into a polydimethylsiloxane (PDMS)‐on‐glass chip. The β‐CD/adamantane (β‐CD/Ada) host–guest complex is confirmed by two dimensional Nuclear Overhauser Effect Spectroscopy NMR (2D NOESY NMR) prior to transfer to microfluidics. Ada‐modified molecules are successfully captured by host–guest interaction formed between the CD‐PMOXA grafted chains in the hydrogel network and the guest molecule in the solution. Furthermore, the captured molecules are released by perfusing free β‐CD with higher binding affinity than those grafted in the hydrogel array. A small guest molecule adamantane‐fluorescein‐isothiocyanate (Ada‐FITC) and a macromolecular guest molecule (Ada‐PMOXA‐Cyanine 5 (Cy5)) are separately captured and released for three times with a release ratio up to 46% and 92%, respectively. The reproducible capture and release of functional molecules with different sizes demonstrates the stability of this hydrogel system in microfluidics and will provide an opportunity for future applications.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3