Mechanochromic Hydrogel Fibers with Multiple Fluorescent Colors

Author:

Xu Bo1,Yang Jin1,Yang Yinghe1,Yang Jiping1,Wang Zhijian12ORCID

Affiliation:

1. Key Laboratory of Aerospace Advanced Materials and Performance Ministry of Education School of Materials Science and Engineering Beihang University Beijing 100191 China

2. Tianmushan Laboratory Xixi Octagon City, Yuhang District Hangzhou 310023 China

Abstract

AbstractMechanochromic polymers can change their color in response to external force and have shown promising applications in stress sensing and failure warning. They are usually obtained as thin films or bulky specimens. The mechanochromic fibers, which can be used to make smart fabrics, have been seldom reported due to the lack of efficient fabrication techniques. In this work, a general method using photo‐polymerization of microgel solution in a template tube to produce mechanochromic hydrogel fibers is reported. The obtained hydrogel fibers can generate visible and fluorescent color changes upon deformation. The diameter of the mechanochromic fibers can be easily adjusted by using different template tubes. The mechanochromic fibers can be fabricated as long as 1 m. By reducing the fiber diameter or increasing the microgel concentration, the mechanical properties of the mechanochromic fibers can be improved, leading to more obvious mechanochromic behavior. The polymethacrylate (PMA) is further used to coat the hydrogel fibers, prevent the loss of water in the fibers, and increase the storage time. The mechanochromic fibers with multiple fluorescent colors are further fabricated by utilizing different microgel solutions. This work provides an easy and effective method to fabricate mechanochromic fibers with different color change abilities.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3