Investigation of the antibacterial mechanism of the novel bactericide dioctyldiethylenetriamine (Xinjunan)

Author:

Jin Ling12345,Chen Xing12345,Pang Chaoyue12345,Zhou Li12345,Liu Yu12345,Sun Yang12345,Xu Liang6,Wang Yongxing6,Chen Yu12345ORCID

Affiliation:

1. School of Plant Protection Anhui Agricultural University Hefei China

2. Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection Anhui Agricultural University Hefei China

3. Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection Anhui Agricultural University Hefei China

4. State Key Laboratory for Biology of Plant Diseases and Insect Pests Hefei Research Center Hefei China

5. Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection Anhui Agricultural University Hefei China

6. Shandong Vicome Greenland Chemical Co., Ltd Shandong China

Abstract

AbstractBACKGROUNDChemical control is an important method for tackling crop diseases. Clarifying the antibacterial mechanisms of bactericides is useful for developing new bactericides and for continuous plant disease control. In this study, the antibacterial mechanism of a novel bactericide, dioctyldiethylenetriamine (Xinjunan), which affects adenosine triphosphate (ATP) synthesis, was investigated.RESULTSThe results of an in vitro inhibition activity assay showed that dioctyldiethylenetriamine inhibited the growth of a variety of plant pathogenic bacteria, especially that of Xanthomonas spp. Scanning electron microscopy demonstrated that dioctyldiethylenetriamine caused cell distortion and rupture. To investigate the molecular mechanism underlying the antibacterial effect of dioctyldiethylenetriamine, transcriptome sequencing (RNA‐seq) was performed for Xanthomonas oryzae pv. oryzae (Xoo, PXO99A) treated with dioctyldiethylenetriamine, which has strong antibacterial effects against xanthomonads. The results showed that differentially expressed genes were enriched mainly in the oxidative phosphorylation and tricarboxylic acid (TCA) cycle pathways after treatment. Moreover, the dioctyldiethylenetriamine treatment exhibited reduction in enzyme activities in the TCA cycle, decreased intracellular nicotinamide adenine dinucleotide and ATP contents, and increased accumulation of reactive oxygen species. In addition, dioctyldiethylenetriamine exhibited an inhibitory effect on the growth of other bacterial pathogens by reducing ATP synthesis.CONCLUSIONThis is the first report of the mechanism by which dioctyldiethylenetriamine inhibits ATP synthesis by affecting oxidative phosphorylation and TCA cycle pathways in bacteria. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3