Optimization and validation of a virus‐like particle pseudotyped virus neutralization assay for SARS‐CoV‐2

Author:

Liu Shuo12,Zhang Li3,Fu Wangjun45,Liang Ziteng23,Yu Yuanling1,Li Tao3,Tong Jincheng3,Liu Fan3,Nie Jianhui3,Lu Qiong3,Lu Shuaiyao6,Huang Weijin3,Wang Youchun12

Affiliation:

1. Changping Laboratory Beijing China

2. Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China

3. Division of HIV/AIDS and Sex‐Transmitted Virus Vaccines National Institutes for Food and Drug Control (NIFDC) Beijing China

4. CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics Chinese Academy of Sciences Beijing China

5. University of Chinese Academy of Sciences Beijing China

6. National Kunming High‐level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming Yunnan, China Kunming China

Abstract

AbstractSpike‐protein‐based pseudotyped viruses were used to evaluate vaccines during the COVID‐19 pandemic. However, they cannot be used to evaluate the envelope (E), membrane (M), and nucleocapsid (N) proteins. The first generation of virus‐like particle (VLP) pseudotyped viruses contains these four structural proteins, but their titers for wild‐type severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) are relatively low, even lower for the omicron variant, rendering them unsuitable for neutralizing antibody detection. By optimizing the spike glycoprotein signal peptide, substituting the complexed M and E proteins with SARS‐COV‐1, optimizing the N protein with specific mutations (P199L, S202R, and R203M), and truncating the packaging signal, PS9, we increased the titer of the wild‐type VLP pseudotyped virus over 100‐fold, and successfully packaged the omicron VLP pseudotyped virus. The SARS‐CoV‐2 VLP pseudotyped viruses maintained stable titers, even through 10 freeze–thaw cycles. The key neutralization assay parameters were optimized, including cell type, cell number, and viral inoculum. The assay demonstrated minimal variation in both intra‐ and interassay results, at 11.5% and 11.1%, respectively. The correlation between the VLP pseudotyped virus and the authentic virus was strong (r = 0.9). Suitable for high‐throughput detection of various mutant strains in clinical serum. In summary, we have developed a reliable neutralization assay for SARS‐CoV‐2 based on VLP pseudotyped virus.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3