Opportunities, Challenges, and Strategies for Scalable Deposition of Metal Halide Perovskite Solar Cells and Modules

Author:

Khorasani Azam1ORCID,Mohamadkhani Fateme2,Marandi Maziar3,Luo Huiming4,Abdi‐Jalebi Mojtaba4ORCID

Affiliation:

1. Department of Electrical‐Electronics Engineering Abdullah Gül University Kayseri 38080 Turkey

2. Department of Materials science and engineering, school of engineering, Shiraz university Shiraz 7134851154 Iran

3. Physics Department Faculty of Science Arak University Arak 38156 Iran

4. Institute for Materials Discovery University College London Malet Place London WC1E 7JE UK

Abstract

Hybrid organic‐inorganic perovskite solar cells (PSCs) have rapidly advanced in the new generation of photovoltaic devices. As the demand for energy continues to grow, the pursuit of more stable, highly efficient, and cost‐effective solar cells has intensified in both academic research and the industry. Consequently, the development of scalable fabrication techniques that yield a uniform and dense perovskite absorber layer with optimal crystallization plays a crucial role to enhance stability and higher efficiency of perovskite solar modules. This review provides a comprehensive summary of recent advancements, comparison, and future prospects of scalable deposition techniques for perovskite photovoltaics. We discuss various techniques, including solution‐based and physical methods such as blade coating, inkjet printing (IJP), screen printing, slot‐die coating, physical vapor deposition, and spray coating that have been employed for fabrication of perovskite modules. The advantages and challenges associated with these techniques, such as contactless and maskless deposition, scalability, and compatibility with roll‐to‐roll processes, have been thoroughly examined. Finally, the integration of multiple subcells in perovskite solar modules is explored using different scalable deposition techniques.

Funder

Department for Business, Energy and Industrial Strategy, UK Government

Horizon 2020 Framework Programme

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3