Affiliation:
1. School of Chemistry and Chemical Engineering School of Materials Science and Engineering Shandong University Jinan 250100 P. R. China
2. School of Mechanical Engineering Chengdu University Chengdu 610106 P. R. China
Abstract
MXene is an emerging 2D material and shows large potential as a substrate for in situ growth of functional materials due to its merits such as large surface area, abundant nucleation sites, structural diversity, superior dispersion ability, blocking agglomeration of nanomaterials, and rich element/kind compositions. The in situ‐formed MXene‐based composites are largely applied in rechargeable batteries in the past several years by acting as active materials, serving as current collectors, decorating separators, and catalyzing electrochemical process. However, a detailed and systematic summary is still lacked. Herein, a review on in situ growth engineering on 2D MXene for next‐generation rechargeable batteries is presented in detail for the first time. Meanwhile, some outlooks and perspectives are put forward. In situ growth engineering on 2D MXenes can be achieved by calcination method, hydrothermal method, solvothermal method, room‐temperature liquid‐phase reduction method, room‐temperature liquid‐phase oxidation method, electrochemical deposition method, in situ polymerization method, vapor deposition method, mechanical milling method, microwave method, composite method, self‐reduction method, coprecipitation method, immersion method, hydrolysis method, etc. These in situ growth strategies can be extended to materials beyond MXenes, such as graphene, MBene, graphdiyne, etc.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献