Cytokine and Epigenetic Regulation of Programmed Death-Ligand 1 in Stem Cell Differentiation and Cancer Cell Plasticity

Author:

Kuo Ming-Han1,Chen Pei-Yu1,Yang Yi-Ping2,Zheng Ming-Yi1,Miao Chia-Cheng1,Wen Kuo-Chang34,Chang Kuo-Ming5,Chou Shih-Jie2,Wang Mong-Lien2,Chiou Shih-Hwa26ORCID,Chou Yu-Ting1ORCID

Affiliation:

1. Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

2. Department of Medical Research  Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China

3. Department of Obstetrics and Gynecology  Shuang Ho Hospital, New Taipei City, Taiwan, Republic of China

4. Department of Obstetrics and Gynecology  School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China

5. Department of Pathology  Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan, Republic of China

6. Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, Republic of China

Abstract

Abstract Programmed death-ligand 1 (PD-L1), an immune checkpoint ligand, is recognized as a potential target for cancer immunotherapy as well as for the induction of transplantation tolerance. However, how the crosstalk between stem cell programming and cytokine signaling regulates PD-L1 expression during stem cell differentiation and cancer cell plasticity remains unclear. Herein, we reported that PD-L1 expression was regulated by SOX2 during embryonic stem cell (ESC) differentiation and lung cancer cell plasticity. PD-L1 was induced during ESC differentiation to fibroblasts and was downregulated during SOX2-mediated reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs). Furthermore, SOX2 activation affected cancer cell plasticity and inhibited PD-L1 expression in lung cancer cells. We discovered that the H3K27ac signal at the PD-L1 locus was enhanced during ESC differentiation to fibroblasts as well as during cancer plasticity of SOX2-positive lung cancer cells to SOX2-negative counterparts. Romidepsin, an epigenetic modifier, induced PD-L1 expression in lung cancer cells, whereas TGF-β stimulation downregulated SOX2 but upregulated PD-L1 expression in lung cancer cells. Furthermore, in addition to PD-L1, the expressions of EGFR and its ligand HBEGF were downregulated by activation of endogenous SOX2 expression during lung cancer cell plasticity and iPSC reprogramming, and the activation of EGFR signaling by HBEGF upregulated PD-L1 expression in lung cancer cells. Together, our results reveal the crosstalk between SOX2 programming and cytokine stimulation influences PD-L1 expression, and these findings may provide insights into PD-L1-mediated therapeutics.

Funder

Ministry of Science and Technology

National Tsing Hua University

Veterans General Hospitals and University System of Taiwan Joint Research Program

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3