Bardoxolone methyl attenuates doxorubicin‐induced cardiotoxicity by inhibiting the TXNIP–NLRP3 pathway through Nrf2 activation

Author:

Zhang Wei1ORCID,Shi Chao2,Yao Zhuoya1,Qian Shaohuan1

Affiliation:

1. Department of Cardiovascular Medicine The First Affiliated Hospital of Bengbu Medical College Bengbu Anhui China

2. Department of Cardiac Surgery The First Affiliated Hospital of Bengbu Medical College Bengbu Anhui China

Abstract

AbstractBardoxolone methyl, which triggers nuclear factor erythroid 2‐related factor (Nrf2), has therapeutic effects against myocardial infarction, heart failure, and other diseases. Nrf2 can inhibit the activation of the thioredoxin‐interacting protein (TXNIP)/NLR family pyrin domain‐containing protein 3 (NLRP3) pathway. Doxorubicin is an anthracycline chemotherapeutic drug associated with cardiotoxicity, limiting its clinical use. In this study, we explored the specific mechanism of the Nrf2–TXNIP–NLRP3 pathway in doxorubicin‐induced cardiotoxicity using bardoxolone methyl in animal and cell models. Using in vivo and in vitro experiments, we show that doxorubicin can induce oxidative stress and pyroptosis in the heart. Western blot and co‐immunoprecipitation experimental results found that doxorubicin can reduce the interaction between TXNIP and TRX, increase the interaction between TXNIP and NLRP3, and activate the pyroptosis process. Bardoxolone methyl reduces the accumulation of reactive oxygen species in cardiomyocytes through the Nrf2 pathway, inhibits the interaction between TXNIP and NLRP3, and alleviates the progression of myocardial damage and cardiac fibrosis. Bardoxolone methyl lost its therapeutic effect when the expression of Nrf2 was decreased. Additionally, repressing the expression of TXNIP can inhibit the activation of NLRP3 and alleviate myocardial damage caused by doxorubicin. Collectively, our findings confirm that bardoxolone methyl alleviates doxorubicin‐induced cardiotoxicity by activating Nrf2 and inhibiting the TXNIP–NLRP3 pathway.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3