Myoglobin improves doxycycline sensitivity in pancreatic cancer through promoting heme oxygenase‐1‐mediated ferroptosis

Author:

Zhang Lun1ORCID,Yang Liuxu1,Du Keyuan1,Yang Yixuan1

Affiliation:

1. Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China

Abstract

AbstractFerroptosis is expected to be a therapeutic target for cancers including pancreatic cancer. We aimed to screen genes that regulate ferroptosis and doxycycline resistance in pancreatic cancer and to explore the underlying mechanisms. Bioinformatics analysis was performed to identify genes that respond to ferroptosis in two human pancreatic cancer cells with GOT1 knocked down or not. 325 and 842 genes were upregulated in MiaPaCa and Tu8902 cells in response to GOT1 knockdown, with 43 genes shared. Among the 43 genes, 14 genes were identified to interact with ferroptosis key genes. MB and HMOX1 were the genes most sensitive to Erastin and doxycycline. Moreover, MB and HMOX1 expression was higher in human normal pancreatic duct epithelial cells than in pancreatic cancer cells. MB and HMOX1 proteins physically bound and promoted each other's expression. By interacting with HMOX1, MB suppressed pancreatic cancer cell proliferation, colony formation and invasion, and promoted cell ferroptosis and sensitivity to erastin and doxycycline. Silencing HMOX1 reversed the promoting effect of MB on cell ferroptosis and sensitivity to doxycycline. A pancreatic cancer xenograft model was established by subcutaneous injection of Panc‐1 cells transfected with or without Ad‐MB, and doxycycline was administered intraperitoneally. Overexpression of MB enhanced the inhibitory effect of doxycycline on xenograft growth. In conclusion, MB facilitated doxycycline sensitivity in pancreatic cancer cells through promoting HMOX1‐mediated ferroptosis.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3