Implementation of suitable optimal control strategy through introspection of different delay induced mathematical models for leprosy: A comparative study

Author:

Ghosh Salil1,Roy Amit Kumar2ORCID,Roy Priti Kumar1

Affiliation:

1. Centre for Mathematical Biology and Ecology Department of Mathematics, Jadavpur University Kolkata India

2. Department of Mathematics School of Physical Sciences, Sikkim University Gangtok Sikkim India

Abstract

AbstractInvolving intracellular delay into a mathematical model and investigating the delayed systems by incorporating optimal control is of great importance to study the cell‐to‐cell interactions of the disease leprosy. Keeping this in mind, we have proposed two different variants of delay‐induced mathematical models with time delay in the process of proliferation of Mycobacterium leprae bacteria from the infected cells and a similar delay to indicate the time‐lag both in the proliferation of M. leprae bacteria and the infection of healthy cells after getting attached with the bacterium. In this research article, we have performed a comparative study between these two delayed systems equipped with optimal control therapeutic approach to determine which one acts better to unravel the complexities of the transmission and dissemination of leprosy into a human body as far as scheduling a perfect drug dose regime depending on this analysis remains our main priority. Our investigations suggest that adopting optimal control strategy consisting of combined drug therapy eliminates the oscillatory behavior of the delayed systems completely. Existence of optimal control solutions are demonstrated in detail. To achieve the optimal control profiles of the drug therapies and to obtain the optimality systems, Pontryagin's Minimum principle with delay in state are employed for our controlled systems. Furthermore, the analytical as well as the numerical outcomes obtained in this research article indicate that the delayed bacterial proliferation and M. leprae‐induced infection model equipped with optimal control policy performs more realistically and accurately in the form of a safe and cost‐effective double‐drug therapeutic regimen. All the mathematical results are verified numerically and the numerical results are compared with some recent clinical data in our article as well.

Publisher

Wiley

Subject

Applied Mathematics,Control and Optimization,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3