Determining the optimum fixed solar-shading device for minimizing the energy consumption of a side-lit office building in a hot climate

Author:

Alajmi Ali F., ,Aba-alkhail Faris,ALAnzi Adnan, ,

Abstract

Buildings consume nearly 40% of the annual global energy consumption, with about 70% in hot climate regions. An efficient building design in every aspect is a crucial step towards minimizing such consumption. Windows system, including solar shading attachment, plays a pivotal role in designing a sustainable building. At the beginning, a survey of architectural firms was conducted to assess the current local practice of selecting the type and size of solar shading devices in different orientations. Regrettably, the survey outcomes did not consolidate the designers’ basis for choosing such solar shading devices. Therefore, the main aim of this study is to find the optimum solar shading type and size among the three most common types (simple overhang, louvers, and overhang/sided-fins) in each façade orientation (East, West, North, and South). The manipulated design parameters comprised the overhang projection from the wall base to half of the window’s height and sided-fins projection (from the wall base to half of the window’s width), as well as the overhang projection’s tilt angle (from 90° to 135°). The considered design parameters provide 4416 design options that were handled efficiently by using the simulation-based optimization technique (SBOT). The results showed that the overhang/sided-fins performed best in terms of reducing the total energy consumption in all orientations (13-28%), while louvers’ shading came second on all orientations by saving 10–21% except in the East, where the simple overhang showed slightly better performance by saving 22%. Recommended type and size for the solar shading in each orientation have been provided.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3