Light-emitting Diode Light Transmission through Leaf Tissue of Seven Different Crops

Author:

Massa Gioia,Graham Thomas,Haire Tim,Flemming Cedric,Newsham Gerard,Wheeler Raymond

Abstract

Significant advances in controlled-environment (CE) plant production lighting have been made in recent years, driven by rapid improvements in light-emitting diode (LED) technologies. Aside from energy efficiency gains, LEDs offer the ability to customize the spectrum delivered to a crop, which may have untold benefits for growers and researchers alike. Understanding how these specific wavebands are attenuated by plant tissue is important if lighting engineers are to fully optimize systems for CE plant production. In this study, seven different greenhouse and field crops (radish, Raphanus sativus ‘Cherry Bomb II’; red romaine lettuce, Lactuca sativa ‘Outredgeous’, green leaf lettuce, Lactuca sativa ‘Waldmann’s Green’; pepper, Capsicum annuum ‘Fruit Basket’; soybean, Glycine max ’Hoyt’; cucumber, Cucumis sativus ‘Spacemaster’; canola, Brassica napus ‘Westar’) were grown in CE chambers under two different light intensities (225 and 420 μmol·m−2·s−1). Intact, fully expanded upper canopy leaves were used to determine the level of light transmission, at two to three different plant ages, across seven different wavebands with peaks at 400, 450, 530, 595, 630, 655, and 735 nm. The photosynthetic photon flux (PPF) environment that plants were grown in affected light transmission across the different LED wavelengths in a crop-dependent manner. Plant age had no effect on light transmission at the time intervals examined. Specific waveband transmission from the seven LED sources varied similarly across plant types with low transmission of blue and red wavelengths, intermediate transmission of green and amber wavelengths, and the highest transmission at the far-red wavelengths. Higher native PPF increased anthocyanin levels in red romaine lettuce compared with the lower native PPF treatment. Understanding the differences in light transmission will inform the development of novel, energy-saving lighting architectures for CE plant growth.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3