Greenhouse Energy Curtains Influence Shoot-tip Temperature of New Guinea Impatiens

Author:

Blanchard Matthew G.,Runkle Erik S.,Both Arend-Jan,Shimizu Hiroshi

Abstract

Many greenhouse growers have installed retractable energy curtains to reduce energy losses and heating costs. We performed experiments to quantify the effect of retractable nighttime curtains on plant shoot-tip temperature of New Guinea impatiens (Impatiens hawkeri Bull.) grown in glass-glazed greenhouses during winter. Plants were grown in separate greenhouses under different curtain materials and the following measurements were collected: plant shoot tip, aerial wet and dry bulb, and cover (glazing and superstructure or curtain) temperature; net canopy radiation (250 to 60,000 nm); transmitted shortwave radiation (SWR; 300 to 3,000 nm); and air velocity. At night, plants under an extended curtain had a higher (by 0.5 to 2.3 °C) shoot-tip temperature and the net longwave radiation (LWRnet; 3,000 to 100,000 nm) was 70% to 125% greater than plants without a curtain. Shoot-tip temperature was 0.2 to 0.6 °C lower under a shading curtain with open-weave construction (high air permeability) compared with closed-weave constructed curtains (e.g., blackout). As cover temperature decreased from 21 to 12 °C, measured shoot-tip temperature and LWRnet decreased by a mean of 3.0 °C and 39.1 W·m−2, respectively. Under a vapor pressure deficit (VPD) of 0.4 to 0.9 kPa, plant shoot-tip temperature was a mean of 1.0 °C closer to dry-bulb temperature compared with plants under a VPD of 1.4 to 1.8 kPa as a result of decreased transpiration. During the day, shoot-tip temperature was 1.2 °C lower than dry-bulb temperature when transmitted SWR was less than 100 W·m−2 and on average 1.6 °C higher than the dry-bulb temperature when SWR was more than 100 W·m−2. Therefore, in addition to reducing greenhouse heating costs, a curtain extended at night over a crop of New Guinea impatiens could increase plant shoot-tip temperature and accelerate development.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3