Wind Loads on Single-span Plastic Greenhouses and Solar Greenhouses

Author:

Yang Zai Q.1,Li Yong X.1,Xue Xiao P.2,Huang Chuan R.1,Zhang Bo1

Affiliation:

1. 1Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China

2. 2Shandong Climate Center, Jinan, 250031, China

Abstract

Wind tunnel tests were conducted in an NH-2-type wind tunnel to investigate the wind pressure coefficients and their distribution on the surfaces of a single-span plastic greenhouse and a solar greenhouse. Wind pressures at numerous points on the surfaces of the greenhouse models were simultaneously measured for various wind directions. The critical wind speeds, at which damage occurred on the surfaces of single-span plastic greenhouses and solar greenhouses, were derived. To clearly describe the wind pressure distribution on various surface zones of the greenhouses, the end surface and top surface of the plastic greenhouse and the transparent surface of the solar greenhouse were divided into nine zones, which were denoted as Zone I to Zone IX. The results were as follows: 1) At wind direction angles of 0° and 45°, the end surface of the single-span plastic greenhouse was on the windward side, and the maximum positive wind pressure coefficient was near 1. At wind direction angles of 90° and 180°, the entire end surface of the single-span plastic greenhouse was on the leeward side, and the maximum negative wind pressure coefficient was near −1. The maximum positive wind pressure on the end surface of the single-span plastic greenhouse appeared in Zone IV at a wind direction angle of 15°, whereas the maximum negative pressure appeared in Zone VIII at a wind direction angle of 105°. 2) Most of the wind pressure coefficients on the top surface of the plastic greenhouse were negative. The maximum positive and negative wind pressure coefficient on the top surface of the plastic greenhouse occurred in Zones I and II, respectively, at a wind direction angle of 60°. 3) At a wind direction angle of 0°, the distribution of wind pressure coefficient contours was steady in the middle and lower zones of the transparent surface of the solar greenhouse, and the wind pressure coefficients were positive. At a wind direction angle of 90°, the wind pressure coefficients were negative on the transparent surface of the solar greenhouse. A maximum positive wind pressure coefficient was attained at a wind direction angle of 30° in Zone IX, whereas the maximum suction force occurred in Zone VII at a wind direction angle of 135°. 4) The minimum critical wind speeds required to impair the single-span plastic greenhouse and solar greenhouse were 14.5 and 18.9 m·s−1, respectively.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3