Assessing and Quantifying the Carbon, Nitrogen, and Enzyme Dynamics Effects of Inter-row Cover Cropping on Soils and Apple Tree Development in Orchards

Author:

Ma Jun1,Li Guangzong1,Tian Jianwen2,Jia Yonghua1,Chu Yannan1,Yue Haiying1,Wang Haixia1,Li Xiaolong1

Affiliation:

1. Horticulture Research Institute of Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, Yinchuan, 750001, China

2. Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, Yinchuan, 750001, China

Abstract

Cover crops between rows in orchards can improve the development of soil resources and increase agricultural productivity. However, there have been few reports of cover crops that can act as a “green manure” in apple orchards across arid and semiarid zones. This study investigated the effects of planting interrow vegetation on soil properties and apple tree performance during a 32-month experiment. There were six treatments: clean cultivation as a control; natural grass planting; planting with ryegrass; planting with alfalfa; planting with tall fescue; and planting with villous wild pea cover crops. The treatments primarily affected the 0- to 20-cm surface soil layer. Soil carbon, nitrogen, and enzyme levels initially decreased (during the first 12–24 months); then, they increased (24–32 months). The cover crops significantly increased nutrient contents (soluble organic carbon, microbial carbon and nitrogen, alkaline dissolved nitrogen, nitrate nitrogen, and ammonium nitrogen) in the 0- to 20-cm soil layer by more than 19.6% and increased the related enzyme activities by more than 25.2%. The alfalfa and wild pea alleys had a stronger effect on the soil environment than the control, natural grass, ryegrass, and tall fescue alley treatments; however, after 32 months, the alfalfa treatment inhibited fruit tree growth and development. This was unexpected because alfalfa seemed to have a positive effect on soil fertility characteristics. Under local ecological conditions, villous wild pea had the greatest effect on apple orchard productivity and significantly increased short branching by 15.9%, fruit weight per fruit by 12.6%, yield per plant by 8.6%, and soluble sugar content by 10.5% compared with clean cultivation. The correlation analysis showed that there were significant or highly significant positive correlations between fruit tree performance and soil carbon, nitrogen, and enzyme activity levels as the soil layer depth increased. Therefore, under local ecological conditions, cover crops have a greater effect on orchard surface soil fertility than on deeper soils, and intercropping with villous wild pea potentially produces the greatest improvement in apple orchard productivity.

Publisher

American Society for Horticultural Science

Reference52 articles.

1. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil;Albiach R,2000

2. The design of structural “spider webs.”;Baker WF,2018

3. Root exudates regulate soil fungal community composition and diversity;Broeckling CD,2008

4. Effects of straw mulch on mungbean yield in rice fields with strongly compacted soils;Bunna S,2011

5. Soil enzymes in a changing environment: Current knowledge and future directions;Burns RG,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3