Cloning and Characterization of Glycolate Oxidase and NADH-Dependent Hydropyruvate Reductase Genes in Pachysandra terminalis

Author:

Zhou Suping,Chen Fur-Chi,Nahashon Samuel,Chen Tingting

Abstract

Photorespiration provides a protection mechanism in plants by diverting excessive energy accumulated from photochemical reaction, metabolizing toxic products and producing some protective molecules. The authors report cloning and characterization of a glycolate oxidase gene (GOX; NCBI accession DQ442286) and a NADH-dependent hydroxypyruvate reductase gene (HPR; NCBI DQ442287) from Pachysandra terminallis. The DQ442286 had the predicted GOX-like–Riboflavin-5′-phosphate (FMN) conserved domain and the DQ442287 had the predicted adenosine 5′-(alpha-thio)diphospho-5′-ribofuranosylnicotinamide nicotinamide adenine dinucleotide (NAD) binding domain (2-Hacid_DH_C). C-terminal peroxisome targeting signal was predicted to be -ARL for DQ442286 and –SKL for DQ442287. Both genes encoded enzyme proteins that are located in peroxisome and are involved in the photorespiration process. Real-time quantitative reverse-transcriptase polymerase chain reaction was performed to compare transcript level of the cloned genes after cold treatment. The 18s Ribosomal RNA (rRNA) was included to calibrate the data. The relative cycle threshold values (gene/18s rRNA) were 1.4, 1.5, and 1.5 for GOX and 1.2, 1.3, and 1.3 for HPR in the treatments of 4 °C 4 h, 4 °C 12 h, and control. The data revealed that gene expression was enhanced by only short-term (4-h) cold treatment. A ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco) activase gene (DQ 486905) was also cloned and analyzed following the same procedure.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3