Study on Stability Analysis of Soil-Rock-Mixture Slopes under Freeze-Thaw Erosion in Greater Khingan Mountains

Author:

Zhao Yuxia1ORCID,Liu Kangqi1ORCID,Liu Hongyan1ORCID,Xu Hanhua2ORCID

Affiliation:

1. School of Engineering and Technology China University of Geosciences (Beijing) Beijing 100083 China cugb.edu.cn

2. Kunming Prospecting Design Institute of China Nonferrous Metals Industry Co. Ltd Kunming 650051 China

Abstract

Abstract Under the action of freeze-thaw erosion, slopes in permafrost regions frequently suffer from geological disasters. The unique properties of soil-rock-mixture slopes further complicate this freeze-thaw stability problem. To study the effects of freeze-thaw erosion on the stability of soil-rock-mixture slopes, several indoor tests were first carried out on the specimens collected from the target bare slope at the K105+750~K105+850 section of the Ali River to the Kubuchun Forest Farm along National Highway 332 in permafrost regions of Greater Khingan Mountains, and then, according to the test results, damage theory, strength reduction method, Python script, and ABAQUS numerical analysis software, the slippage and safety factor of the bare slope under freeze-thaw cycles were obtained, and finally, the damage degree of freeze-thaw erosion to the bare slope was quantified. To improve the stability of bare slope in the freeze-thaw environment, the composite ecological slope protection measures of arched skeleton + three-dimensional net + grass planting were finally selected, and its feasibility is verified with the help of on-site monitoring and numerical simulation; then, the long-term freeze-thaw stability of the slope after revetment was studied. Key findings indicated that (1) the threshold between soil and rock in the target slope was 5 mm, the soil-to-rock mass and volume ratios of the slope were 55.04% : 44.96% and 69.38% : 30.62%, respectively. (2) After the 150 freeze-thaw cycles, the peak strength and elastic modulus of the specimens decreased 59.7% and 79.50%, respectively. (3) Meanwhile, the freeze-thaw damage was 0.79. (4) The slope safety factor was inversely proportional to the number of freeze-thaw cycles. The target bare slope was unstable after 150 freeze-thaw cycles, and the safety stability reduction rate was 41%. (5) Compared with the bare slope, the shallow horizontal slip of the slope after revetment decreased from 1.528 m to 4.971 cm, and the slope safety factor increased from 0.997 to 4.501, which shows that the slope protection measures are initially feasible. In addition, the numerical analysis results are consistent with the field monitoring data, and the error between the two is ≤2.01%, which proves the rationality of the numerical model established in this paper and provides data support for subsequent research.

Publisher

GeoScienceWorld

Subject

Geology

Reference41 articles.

1. Investigating toppling failure mechanism of anti-dip layered slope due to excavation by physical modelling;Zhu;Rock Mechanics and Rock Engineering,2020

2. Volumetric deformation and damage evolution of Tibet interbedded skarn under multistage constant-amplitude-cyclic loading;Zhu;International Journal of Rock Mechanics and Mining Sciences,2022

3. Permafrost and climatic change in China;Jin;Global and Planetary Change,2000

4. Study on three-dimensional dynamic stability of open-pit high slope under blasting vibration;Li;Lithosphere,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3