ECM components are essential for proper in vitro myogenesis

Author:

Akpulat UgurORCID

Abstract

Objective: In vitro models of skeletal muscle often utilize primary myoblast cells or myoblast cell lines. Myoblasts require adhesion to the extracellular matrix (ECM) to grow, proliferate, migrate, and differentiate in their natural environments in vivo. To meet the adhesion needs of adhesive cells under in vitro conditions, culture surfaces are coated with various biological or synthetic compounds. Within the scope of the study, the differentiation potential of H2K myoblasts, a cell line resembling primary myoblasts, were comparatively evaluated through morphological analysis on culture surfaces coated with various ECM and synthetic materials. Methods: The culture surfaces were coated with fibronectin and laminin, the major adhesion proteins of ECM; gelatin, a molecular derivative of collagen; matrigel, an ECM extract; and PLL, a synthetic poly-amino acid. Cells were allowed to differentiate in each culture medium for 4 days and their capacity to adhere to the surface and differentiation rates from myoblast to myotube were evaluated by morphological analysis. Results: In the uncoated culture environment, cells could only attach to 30-50% of the culture surface and myotube development was limited and not aligned with each other. On surfaces coated with PLL, no myotube development was observed and cells could only attach to 30-40% of the culture surface. Myotube development and alignment were similar on all surfaces coated with ECM components. On surfaces coated with ECM components laminin, fibronectin and matrigel, cells covered the entire culture surface and exhibited similar myotube development. However, on surfaces coated with gelatin, both cell adhesion to the surface and myotube development were limited compared to other ECM components. The mean myotube diameters of fibronectin, laminin, matrigel, PLL+laminin and gelatin were 49.71µm (±16.3µm), 52.31µm (±15.7µm), 51.9µm (±15.3µm), 53.06µm (±14.2µm) and 35.25µm (±11.4µm), respectively. Conclusion: Within the scope of the study, it was revealed that coating the culture surface with only a cationic material such as PLL does not support myogenesis and ECM components are needed for cell viability and differentiation.

Publisher

Pera Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3