Exploring the Role of Explainable AI in Compliance Models for Fraud Prevention

Author:

Chiamaka Daniella Okenwa. ,Omoyin Damilola. David ,Adeyinka Orelaja. ,Oladayo Tosin Akinwande

Abstract

Integration of explainable Artificial Intelligence (XAI) methodologies into compliance frameworks represents a considerable potential for augmenting fraud prevention strategies across diverse sectors. This paper explores the role of explainable AI in compliance models for fraud prevention. In highly regulated sectors like finance, healthcare, and cybersecurity, XAI helps identify abnormal behaviour and ensure regulatory compliance by offering visible and comprehensible insights into AI-driven decision-making processes. The findings indicate the extent to which XAI can improve the efficacy, interpretability, and transparency of initiatives aimed at preventing fraud. Stakeholders can comprehend judgements made by AI, spot fraudulent tendencies, and rank risk-reduction tactics using XAI methodologies. In addition, it also emphasizes how crucial interdisciplinary collaboration is to the advancement of XAI and its incorporation into compliance models for fraud detection across multiple sectors. In conclusion, XAI in compliance models plays a vital role in fraud prevention. Therefore, through the utilization of transparent and interpretable AI tools, entities can strengthen their ability to withstand fraudulent operations, build trust among stakeholders, and maintain principles within evolving regulatory systems.

Publisher

RSIS International

Reference55 articles.

1. Akindote, O. J., Abimbola Oluwatoyin Adegbite, Samuel Onimisi Dawodu, Adedolapo Omotosho, Anthony Anyanwu, & Chinedu Paschal Maduka. (2023). Comparative review of big data analytics and GIS in healthcare decision-making. World Journal of Advanced Research and Reviews, 20(3), 1293–1302. https://doi.org/10.30574/wjarr.2023.20.3.2589

2. Al-Anqoudi, Y., Al-Hamdani, A., Al-Badawi, M., & Hedjam, R. (2021). Using Machine Learning in Business Process Re-Engineering. Big Data and Cognitive Computing, 5(4), 61. https://doi.org/10.3390/bdcc5040061

3. Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., Guidotti, R., Ser, J. D., Díaz-Rodríguez, N., & Herrera, F. (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion, 99(101805), 101805. sciencedirect. https://doi.org/10.1016/j.inffus.2023.101805

4. Antwarg, L., Miller, R. M., Shapira, B., & Rokach, L. (2021). Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert Systems with Applications, 186, 115736. https://doi.org/10.1016/j.eswa.2021.115736

5. Arrieta, B. A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58(1), 82–115. https://arxiv.org/pdf/1910.10045.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3