Pneumatic Automation Tools: Pneumatic Muscle

Author:

Efremova K D.1,Pilgunov V. N.1

Affiliation:

1. Bauman Moscow State Technical University, Moscow

Abstract

The traditional actuating motor for pneumatic drives is a differential double-acting pneumatic cylinder used to create a pushing force that is significantly larger than the pulling force. The pneumatic muscle is a single-acting operating motor to be used for creating a pulling force. The pneumatic muscle is based on a cylindrical bladder (a thin two-dimensional elastic structure) property to change its shape or size upon applying overpressure of actuating medium to it.The paper objective is to present this new type of the actuating motor to a wide range of specialists in pneumatic automation. Using a bladder structure of the pneumatic muscle of the MAS family, company "FESTO" as an example, the paper considers a physical nature of its operation and defines a dependence of the force, developed by a pneumatic muscle in its internal cavity, on the overpressure value and the value of contraction. Describes an experimental setup to study static and dynamic characteristics of the pneumatic muscle, as well as a design of the loading and measuring device.The experimental study allowed us to obtain static and dynamic characteristics of the pneumatic muscle MAS 10-300: dependencies "force - contraction", "force - overpressure", and “contraction -overpressure". The averaged predicted value of the braid angle of impulsion of the cord thread for three sizes of the MAS family pneumatic muscle is determined according to German FESTO Product Catalogue to be 23 ... 25.5°.It is shown that the force curve of the pneumatic muscle is essentially nonlinear: the curve linearity is evident only when the pneumatic muscle contractions are, at most, 2% of its original length. Dynamic properties of the pneumatic muscle loaded with a constant force were evaluated through analysis of frequency characteristics: the operating frequency of the pneumatic muscle was f = 3 ... 6 Hz.The paper presents the reproducibility data of the force characteristic of a pneumatic muscle during its cyclic constant-value over-pressurisation p = 4 bar with a frequency f = 0.5 Hz.The researches have shown that with the cyclic over-pressurisation of the pneumatic muscle the force-value deviations from its averaged value are of systematic nature, depend on the number of loads, and so cannot be estimated by statistical characteristics. The paper considers an operating mode of the pneumatic muscle, as an extension spring, which is appropriate to the external force application to the pneumatic muscle to ensure return of the pneumatic muscle to the initial position after its contraction under over-pressurisation. An average value of the pneumatic spring stiffness is obtained from the force characteristic of the pneumatic muscle through its piecewise-linear approximation within the specified range of change in the contraction value. A comparative estimate of the forces developed by pneumatic muscles and pneumatic cylinders with equal working areas is given.  It has been found that the pneumatic muscle contraction force exceeds the pulling force of the pneumatic cylinder, on average, 12 ... 14 times, but this advantage comes out only when the contractions of a pneumatic muscle are small. The usability of a short pneumatic muscle, as a control and loading device for the gates of hydraulic and pneumatic valve-type automation devices, has been investigated.

Publisher

NPG Publishing

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference19 articles.

1. Alykov A.N., Dranitskij I.O., Usachev K.A. Pneumatic muscles and their application in robotic systems. Molodezhnyj nauchno-tekhnicheskij vestnik MGTU im. N.E. Baumana [Youth Scientific and Technical Bull. of the Bauman MSTU], 2015, no. 9. Available at: http://sntbul.bmstu.ru/doc/801411.html, accessed 9.11.2017 (in Russian).

2. Elastichnye mekhanizmy i konstruktsii [Elastic mechanisms and constructions] / Shikhirin V.D. a.o. Irkutsk: Irkutsk State Technical Univ. Publ., 2006. 287 p. (in Russian).

3. Beliaev A.Yu., Shchukin T.N. TRIZ – analiz napravlenij proektirovaniia iskusstvennykh muskulov: obzor [TRIZ – analysis of trends in the design of artificial muscles: a review]. Moscow, 2012. 32 p. Available at: http://2045.ru/pdf/kopp_ Beliaev_Schukin.pdf, accessed 15.11.2017 (in Russian).

4. Daerden F., Lefeber D. Pneumatic artificial muscles: actuators for robotics and automation. Available at: http://lucy.vub.ac/be/publications/Daerden_ Lefeber_EJMEE.pdf, accessed 15.11.2017.

5. Iancu A., Filip V. Experimental studies regarding the behavior of a mechanical system with pneumatic muscle driven by compressed air. The Scientific Bulletin of Valahia Univ. Materials and Mechanics, 2011, no. 6, pp. 160-167.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Mechanism of the Origin of the Cavitation Effect on Electrochemically Hydrogen-Charged Palladium;Protection of Metals and Physical Chemistry of Surfaces;2020-09

2. Pneumatic Muscle: Heat and Mass Transfer in the Cylindrical Membrane;Mechanical Engineering and Computer Science;2018-10-20

3. Pneumatic Muscle: Geometry of the Cylindrical Membrane and The Power Characteristic Prognostic;Mechanical Engineering and Computer Science;2018-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3