DNA‐PKcs and ATM modulate mitochondrial ADP‐ATP exchange as an oxidative stress checkpoint mechanism

Author:

Chen Wei‐Min12ORCID,Chiang Jui‐Chung12ORCID,Shang Zengfu1ORCID,Palchik Guillermo1ORCID,Newman Ciara1ORCID,Zhang Yuanyuan1,Davis Anthony J1,Lee Hsinyu2ORCID,Chen Benjamin PC1ORCID

Affiliation:

1. Division of Molecular Radiation Biology, Department of Radiation Oncology University of Texas Southwestern Medical Center at Dallas Dallas TX USA

2. Department of Life Science National Taiwan University Taipei Taiwan

Abstract

AbstractDNA‐PKcs is a key regulator of DNA double‐strand break repair. Apart from its canonical role in the DNA damage response, DNA‐PKcs is involved in the cellular response to oxidative stress (OS), but its exact role remains unclear. Here, we report that DNA‐PKcs‐deficient human cells display depolarized mitochondria membrane potential (MMP) and reoriented metabolism, supporting a role for DNA‐PKcs in oxidative phosphorylation (OXPHOS). DNA‐PKcs directly interacts with mitochondria proteins ANT2 and VDAC2, and formation of the DNA‐PKcs/ANT2/VDAC2 (DAV) complex supports optimal exchange of ADP and ATP across mitochondrial membranes to energize the cell via OXPHOS and to maintain MMP. Moreover, we demonstrate that the DAV complex temporarily dissociates in response to oxidative stress to attenuate ADP‐ATP exchange, a rate‐limiting step for OXPHOS. Finally, we found that dissociation of the DAV complex is mediated by phosphorylation of DNA‐PKcs at its Thr2609 cluster by ATM kinase. Based on these findings, we propose that the coordination between the DAV complex and ATM serves as a novel oxidative stress checkpoint to decrease ROS production from mitochondrial OXPHOS and to hasten cellular recovery from OS.

Funder

National Institutes of Health

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Molecular Biology,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3