System‐wide optimization of an orthogonal translation system with enhanced biological tolerance

Author:

Mohler Kyle12,Moen Jack M345,Rogulina Svetlana12,Rinehart Jesse12ORCID

Affiliation:

1. Department of Cellular & Molecular Physiology Yale School of Medicine New Haven CT USA

2. Systems Biology Institute Yale University New Haven CT USA

3. Quantitative Biosciences Institute (QBI) University of California, San Francisco San Francisco CA USA

4. 2QBI Coronavirus Research Group (QCRG) San Francisco CA USA

5. Department of Cellular and Molecular Pharmacology University of California, San Francisco San Francisco CA USA

Abstract

AbstractOver the past two decades, synthetic biological systems have revolutionized the study of cellular physiology. The ability to site‐specifically incorporate biologically relevant non‐standard amino acids using orthogonal translation systems (OTSs) has proven particularly useful, providing unparalleled access to cellular mechanisms modulated by post‐translational modifications, such as protein phosphorylation. However, despite significant advances in OTS design and function, the systems‐level biology of OTS development and utilization remains underexplored. In this study, we employ a phosphoserine OTS (pSerOTS) as a model to systematically investigate global interactions between OTS components and the cellular environment, aiming to improve OTS performance. Based on this analysis, we design OTS variants to enhance orthogonality by minimizing host process interactions and reducing stress response activation. Our findings advance understanding of system‐wide OTS:host interactions, enabling informed design practices that circumvent deleterious interactions with host physiology while improving OTS performance and stability. Furthermore, our study emphasizes the importance of establishing a pipeline for systematically profiling OTS:host interactions to enhance orthogonality and mitigate mechanisms underlying OTS‐mediated host toxicity.

Funder

National Institutes of Health

Yale School of Medicine

Publisher

EMBO

Subject

Applied Mathematics,Computational Theory and Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3