Modeling Dengue Immune Responses Mediated by Antibodies: Insights on the Biological Parameters to Describe Dengue Infections

Author:

Anam Vizda1ORCID,Sebayang Afrina Andriani2,Fahlena Hilda2,Knopoff Damian1ORCID,Stollenwerk Nico13,Soewono Edy24,Aguiar Maíra145

Affiliation:

1. Basque Center for Applied Mathematics, BCAM, Bilbao, Spain

2. Department of Mathematics, Institut Teknologi Bandung, Bandung, West Java, Indonesia

3. Dipartimento di Matematica, Universita degli Studi di Trento, Italy

4. Center for Mathematical Modeling and Simulation, Institut Teknologi Bandung, Bandung, West Java, Indonesia

5. Ikerbasque, Basque Foundation for Science, Bilbao, Spain

Abstract

Dengue fever is a viral mosquito-borne disease, a significant global health concern, with more than one third of the world population at risk of acquiring the disease. Caused by 4 antigenically distinct but related virus serotypes, named DENV-1, DENV-2, DENV-3, and DENV-4, infection by one serotype confers lifelong immunity to that serotype and a short period of temporary cross immunity to other related serotypes. Severe dengue is epidemiologically associated with a secondary infection caused by a heterologous serotype via the so-called antibody-dependent enhancement (ADE), an immunological process enhancing a new infection. Within-host dengue modeling is restricted to a small number of studies so far. With many open questions, the understanding of immunopathogenesis of severe disease during recurrent infections is important to evaluate the impact of newly licensed vaccines. In this paper, we revisit the modeling framework proposed by Sebayang et al. and perform a detailed sensitivity analysis of the well-known biological parameters and its possible combinations to understand the existing data sets. Using numerical simulations, we investigate features of viral replication, antibody production, and infection clearance over time for three possible scenarios: primary infection, secondary infection caused by homologous serotype, and secondary infection caused by heterologous serotype. Besides, describing well the infection dynamics as reported in the immunology literature, our results provide information on parameter combinations to best describe the differences on the immunological dynamics of secondary infections with homologous and heterologous viruses. The results presented here will be used as baseline to investigate a more complex within-host dengue model.

Funder

Horizon 2020 Framework Programme

Publisher

Hindawi Limited

Subject

Computational Mathematics,Computational Theory and Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3