Interactive Effects of Swimming High-Intensity Interval Training and Resveratrol Supplementation Improve Mitochondrial Protein Levels in the Hippocampus of Aged Rats

Author:

Amirazodi Maryam12ORCID,Daryanoosh Farhad1ORCID,Mehrabi Amin23ORCID,Gaeini Abbasali4ORCID,Koushkie Jahromi Maryam1ORCID,Salesi Mohsen1ORCID,Zarifkar Amir Hossein5ORCID

Affiliation:

1. Department of Sport Sciences, Shiraz University, Shiraz, Iran

2. Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

3. Department of Sport Science, Kish International Campus, University of Tehran, Kish, Iran

4. Department of Exercise Physiology, Faculty of Physical Education, University of Tehran, Tehran, Iran

5. School of Nursing, Larestan University of Medical Sciences, Larestan, Iran

Abstract

Mitochondrial dysfunction and increased oxidative stress cause damage to cells which can lead to the aging process and age-related diseases. Antioxidants such as resveratrol and high-intensity exercise can benefit oxidative damage prevention. This study is aimed at evaluating the effects of swimming high-intensity interval training and resveratrol on mitochondrial metabolism key proteins, SIRT5, SOD1, and PDH-E1α, and the level of NAD+ as a cofactor in the deacetylation process in aged rat hippocampus. Forty-five male Wistar rats, aged 20 months, were randomly divided into five groups: control (C), Swimming High-Intensity Interval Training (HIIT) (S-HIIT), Swimming HIIT with resveratrol supplementation (S-HIIT-R), resveratrol supplementation (R), and solvent of resveratrol supplementation (SR). S-HIIT and resveratrol groups performed the exercise and received resveratrol (10 mg/kg/day, gavage) for six weeks. Western blot analysis was performed to determine the protein level in the hippocampus. The amount of SIRT5 and SOD1 proteins in the hippocampus increased. S-HIIT with resveratrol or resveratrol alone increased the PDH-E1α level significantly. The amount of NAD+ was analyzed by assay kit that was reduced in S-HIIT, S-HIIT-R, and SR groups compared to controls. The results showed that resveratrol and S-HIIT attenuated the age-related brain changes by increasing the expression of SOD1 and SIRT5 and reducing the level of NAD+ in the hippocampus. Considering these findings, S-HIIT and resveratrol supplementation could be proposed as strategies to attenuate age-related brain changes. Resveratrol alone and exercise through the regulation of crucial proteins and cofactors can influence mitochondrial metabolism and oxidative stress in the hippocampus of aged rats.

Funder

Neuroscience Research Center of Kerman, Iran

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3