Chaihu plus Longgu Muli Decoction Alleviated Brain Injury in Pentylenetetrazole-Kindled Epileptic Mice by Regulating Cyclooxygenase-2/Prostaglandin E2/Multidrug Transporter Pathway

Author:

Shan Ping1ORCID,Zhang Jilong2,Gou Yulan1,Luo Lijun1,Zhu Suiqiang3ORCID

Affiliation:

1. Department of Neurology, Wuhan First Hospital, Wuhan 430022, China

2. Department of Emergency, Wuhan First Hospital, Wuhan 430022, China

3. Department of Neurology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China

Abstract

Objective. To evaluate the effect of CLMD administration on epileptic seizures and brain injury in pentylenetetrazole- (PZT-) kindled mice. Methods. The effect of pretreatment with CLMD (5, 10, and 20 ml/kg (mg/kg) by gavage) for seven days on PTZ-induced kindling, duration and grade of kindling-induced seizures, and pathological injury in the cortex and hippocampus was evaluated. Male BALB/c mice with adenosine A1 receptor knockout were subjected to intraperitoneal injection of PTZ (35 mg/kg) once every day until kindling was successfully induced. Quantitative reverse transcription polymerase chain reaction, immunofluorescence, and western blot were performed to assess the mRNA and protein levels of p-glycoprotein (PGP), multidrug resistance-associated protein 1 (MRP1), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and adenylate kinase (ADK) in the cortex and hippocampus. Results. PTZ successfully induced kindling in mice after 21 days, wherein CLMD showed an obvious dose-dependent antiepileptic effect. High-dose CLMD significantly increased the latency of epileptic seizures, decreased the sustained time of epileptic seizures and the seizure grade, and ameliorated the histopathological changes in the cortex and hippocampus. Furthermore, PTZ kindling induced significantly higher levels of PGP, MRP1, COX-2, PGE2, and ADK, but this effect was inhibited by pretreatment with CLMD in a dose-dependent manner. Conclusion. Pretreatment with CLMD attenuates PTZ-kindled convulsions and brain injury in mice. The mechanism may be related to the cyclooxygenase-2/prostaglandin E2/multidrug transporter pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3