Investigation on the Accuracy of Approximate Solutions Obtained by Perturbation Method for Galloping Equation of Iced Transmission Lines

Author:

Liu Xiaohui1ORCID,Yang Shuguang2ORCID,Min Guangyun2ORCID,Cai Mengqi3ORCID,Wu Chuan4ORCID,Jiang Yantao1ORCID

Affiliation:

1. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

3. School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China

4. State Grid Henan Electric Power Research Institute, Zhengzhou 450052, China

Abstract

Perturbation method is a commonly used method to solve galloping equation of iced transmission lines, but few scholars have studied the influences of perturbation method on the accuracy of approximate solutions of the galloping equation. In order to analyze the accuracy of approximate solutions obtained by perturbation method for galloping equation of iced transmission lines, the partial differential galloping equation of iced transmission lines with quadratic and cubic nonlinear terms is obtained firstly. Then, the partial differential galloping equation is transformed into ordinary differential galloping equation by Galerkin method. Finally, the approximate solutions of the partial differential galloping equation are obtained by averaging method and first-order, second-order, third-order, and fourth-order multiple scales methods, and the results obtained by these methods are compared systematically. By comparing the numerical solutions and the approximate solutions obtained by averaging method, it can be found that, with the increasing in wind velocity and Young’s modulus of iced transmission lines, the nonlinearity of the system would strengthen and the drift of the vibration center of the system would also increase. The larger the drift is, the greater the error between the approximate solutions obtained by averaging method and the numerical solutions will be. And when the wind velocity reaches 32 m/s, the error would arrive at 17.321%. By comparing the numerical solutions and the approximate solutions obtained by the first-order, the second-order, the third-order, and the fourth-order multiple scales methods, it can be concluded that the first-order multiple scales method is less complex computationally. The accuracy of approximate solutions obtained by the fourth-order multiple scales method is better than that obtained by the first-order, the second-order, and the third-order multiple scales methods, and the error between the approximate solutions obtained by the fourth-order multiple scales method and the numerical solutions is less than 0.639%. The conclusions obtained in this paper would be helpful to the solutions of galloping equation of iced transmission lines and could also give some references to practical engineering.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3