Experimental and Constitutive Model Study on Dynamic Mechanical Behavior of Metal Rubber under High-Speed Impact Loading

Author:

Zou Youchun1ORCID,Xiong Chao1ORCID,Yin Junhui1ORCID,Cui Kaibo1,Zhu Xiujie1,Deng Huiyong1,Song Shijun1

Affiliation:

1. Department of Artillery Engineering, Shijiazhuang Campus, Army Engineering University of PLA, Shijiazhuang 050003, China

Abstract

The development of lightweight, impact-resistant, and high energy-consuming materials is of great significance for improving the defense capabilities of military equipment. As a new type of damping material, metal rubber has demonstrated great potential for application in the field of impact protection. In this paper, the dynamic mechanical response of metal rubber under a high strain rate is studied, which provides a new idea for developing high-performance protective materials. The stress-strain curves, energy absorption performance, and wave transmission performance of metal rubber at various strain rates were investigated based on a split-Hopkinson pressure bar (SHPB) device. The dynamic stress-strain curve of metal rubber is divided into three stages: elastic stage, plastic stage, and failure stage. The optimal energy absorption efficiency is greater than 0.5, and the maximum value can reach 0.9. The wave transmittance is less than 0.01. The dynamic mechanical tests have proved that metal rubber has excellent energy absorption capacity and impact resistance property. A constitutive model based on Sherwood–Frost was established to predict the dynamic mechanical behavior of metal rubber. The results of comparison between the calculation and the experiment show that the constitutive model can accurately predict the dynamic mechanical performance of metal rubber.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3