A Simple Method to Train the AI Diagnosis Model of Pulmonary Nodules

Author:

He Zhehao1ORCID,Lv Wang1,Hu Jian1ORCID

Affiliation:

1. Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, China

Abstract

Background. The differential diagnosis of subcentimetre lung nodules with a diameter of less than 1 cm has always been one of the problems of imaging doctors and thoracic surgeons. We plan to create a deep learning model for the diagnosis of pulmonary nodules in a simple method. Methods. Image data and pathological diagnosis of patients come from the First Affiliated Hospital of Zhejiang University School of Medicine from October 1, 2016, to October 1, 2019. After data preprocessing and data augmentation, the training set is used to train the model. The test set is used to evaluate the trained model. At the same time, the clinician will also diagnose the test set. Results. A total of 2,295 images of 496 lung nodules and their corresponding pathological diagnosis were selected as a training set and test set. After data augmentation, the number of training set images reached 12,510 images, including 6,648 malignant nodular images and 5,862 benign nodular images. The area under the P-R curve of the trained model is 0.836 in the classification of malignant and benign nodules. The area under the ROC curve of the trained model is 0.896 (95% CI: 78.96%~100.18%), which is higher than that of three doctors. However, the P value is not less than 0.05. Conclusion. With the help of an automatic machine learning system, clinicians can create a deep learning pulmonary nodule pathology classification model without the help of deep learning experts. The diagnostic efficiency of this model is not inferior to that of the clinician.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3