A De Novo Noncoding RARB Variant Associated with Complex Microphthalmia Alters a Putative Regulatory Element

Author:

Replogle Maria R.1,Thompson Samuel1ORCID,Reis Linda M.1,Semina Elena V.12ORCID

Affiliation:

1. Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA

2. Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI, USA

Abstract

Retinoic acid receptor beta (RARB) is a transcriptional regulator crucial for coordinating retinoic acid- (RA-) mediated morphogenic movements, cell growth, and differentiation during eye development. Loss- or gain-of-function RARB coding variants have been associated with microphthalmia, coloboma, and anterior segment defects. We identified a de novo variant c.157+1895G>A located within a conserved region (CR1) in the first intron of RARB in an individual with complex microphthalmia and significant global developmental delay. Based on the phenotypic overlap, we further investigated the possible effects of the variant on mRNA splicing and/or transcriptional regulation through in silico and functional studies. In silico analysis identified the possibility of alternative splicing, suggested by one out of three (HSF, SpliceAI, and MaxEntScan) splicing prediction programs, and a strong indication of regulatory function based on publicly available DNase hypersensitivity, histone modification, chromatin folding, and ChIP-seq data sets. Consistent with the predictions of SpliceAI and MaxEntScan, in vitro minigene assays showed no effect on RARB mRNA splicing. Evaluation of CR1 for a regulatory role using luciferase reporter assays in human lens epithelial cells demonstrated a significant increase in the activity of the RARB promoter in the presence of wild-type CR1. This activity was further significantly increased in the presence of CR1 carrying the c.157+1895G>A variant, suggesting that the variant may promote RARB overexpression in human cells. Induction of RARB overexpression in human lens epithelial cells resulted in increased cell proliferation and elevated expression of FOXC1, a known downstream target of RA signaling and a transcription factor whose down- and upregulation is associated with ocular phenotypes overlapping the RARB spectrum. These results support a regulatory role for the CR1 element and suggest that the de novo c.157+1895G>A variant affecting this region may alter the proper regulation of RARB and, as a result, its downstream genes, possibly leading to abnormal development.

Funder

Children’s Research Institute Foundation at Children’s Wisconsin

Publisher

Hindawi Limited

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3