Chest X-Ray Images to Differentiate COVID-19 from Pneumonia with Artificial Intelligence Techniques

Author:

Islam Rumana1ORCID,Tarique Mohammed2ORCID

Affiliation:

1. Department of ECE, University of Windsor, ON, N9B 3P4, Canada

2. Department of ECE, University of Science and Technology of Fujairah, UAE

Abstract

This paper presents an automated and noninvasive technique to discriminate COVID-19 patients from pneumonia patients using chest X-ray images and artificial intelligence. The reverse transcription-polymerase chain reaction (RT-PCR) test is commonly administered to detect COVID-19. However, the RT-PCR test necessitates person-to-person contact to administer, requires variable time to produce results, and is expensive. Moreover, this test is still unreachable to the significant global population. The chest X-ray images can play an important role here as the X-ray machines are commonly available at any healthcare facility. However, the chest X-ray images of COVID-19 and viral pneumonia patients are very similar and often lead to misdiagnosis subjectively. This investigation has employed two algorithms to solve this problem objectively. One algorithm uses lower-dimension encoded features extracted from the X-ray images and applies them to the machine learning algorithms for final classification. The other algorithm relies on the inbuilt feature extractor network to extract features from the X-ray images and classifies them with a pretrained deep neural network VGG16. The simulation results show that the proposed two algorithms can extricate COVID-19 patients from pneumonia with the best accuracy of 100% and 98.1%, employing VGG16 and the machine learning algorithm, respectively. The performances of these two algorithms have also been collated with those of other existing state-of-the-art methods.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Assessment of Dysarthrophonic Voice with RASTA-PLP Features: A Nonlinear Spectral Measures;2023 2nd International Conference on Mechatronics and Electrical Engineering (MEEE);2023-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3