Ganoderma lucidum Spore Polysaccharide Inhibits the Growth of Hepatocellular Carcinoma Cells by Altering Macrophage Polarity and Induction of Apoptosis

Author:

Song Ming1ORCID,Li Zhen-hao2,Gu Hong-shun3,Tang Ru-ying4,Zhang Rui1,Zhu Ying-li4,Liu Jin-lian1,Zhang Jian-jun1ORCID,Wang Lin-yuan4ORCID

Affiliation:

1. School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China

2. Zhejiang Shouxiangu Institute of Rare Medicine Plant, Wuyi, 321200, China

3. Beijing Cairui Medicine Technology Institute, Beijing 100094, China

4. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China

Abstract

Background. Ganoderma lucidum has certain components with known pharmacological effects, including strengthening immunity and anti-inflammatory activity. G. lucidum seeds inherit all its biological characteristics. G. lucidum spore polysaccharide (GLSP) is the main active ingredient to enhance these effects. However, its specific biological mechanisms are not exact. Our research is aimed at revealing the specific biological mechanism of GLSP to enhance immunity and inhibit the growth of H22 hepatocellular carcinoma cells. Methods. We extracted primary macrophages (Mø) from BALB/c mice and treated them with GLSP (800 μg/mL, 400 μg/mL, and 200 μg/mL) to observe its effects on macrophage polarization and cytokine secretion. We used GLSP and GLSP-intervened macrophage supernatant to treat H22 tumor cells and observed their effects using MTT and flow cytometry. Moreover, real-time fluorescent quantitative PCR and western blotting were used to observe the effect of GLSP-intervened macrophage supernatant on the PI3K/AKT and mitochondrial apoptosis pathways. Results. In this study, GLSP promoted the polarization of primary macrophages to M1 type and the upregulation of some cytokines such as TNF-α, IL-1β, IL-6, and TGF-β1. The MTT assay revealed that GLSP+Mø at 400 μg/mL and 800 μg/mL significantly inhibited H22 cell proliferation in a dose-dependent manner. Flow cytometry analysis revealed that GLSP+Mø induced apoptosis and cell cycle arrest at the G2/M phase, associated with the expression of critical genes and proteins (PI3K, p-AKT, BCL-2, BAX, and caspase-9) that regulate the PI3K/AKT pathway and apoptosis. GLSP reshapes the tumor microenvironment by activating macrophages, promotes the polarization of primary macrophages to M1 type, and promotes the secretion of various inflammatory factors and cytokines. Conclusion. Therefore, as a natural nutrient, GLSP is a potential agent in hepatocellular carcinoma cell treatment and induction of apoptosis.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3