An Automatic Random Walker Algorithm for Segmentation of Ground Glass Opacity Pulmonary Nodules

Author:

Li Xiangxia1ORCID,Li Bin2,Yin Hua1,Xu Bo1

Affiliation:

1. School of Information Engineering, Guangdong University of Finance & Economics, Guangzhou, Guangdong, China

2. School of Automation Science and Engineering, South China University of Technology, Guangzhou, China

Abstract

Automatic and accurate segmentation of ground glass opacity (GGO) nodules still remains challenging due to inhomogeneous interiors, irregular shapes, and blurred boundaries from different patients. Despite successful applications in the image processing domains, the random walk has some limitations for segmentation of GGO pulmonary nodules. In this paper, an improved random walker method is proposed for the segmentation of GGO nodules. To calculate a new affinity matrix, intensity, spatial, and texture features are incorporated. It strengthens discriminative power between two adjacent nodes on the graph. To address the problem of robustness in seed acquisition, the geodesic distance is introduced and a novel local search strategy is presented to automatically acquire reliable seeds. For segmentation, a label constraint term is introduced to the energy function of original random walker, which alleviates the accumulation of errors caused by the initial seeds acquisition. Massive experiments conducted on Lung Images Dataset Consortium (LIDC) demonstrate that the proposed method achieves visually satisfactory results without user interactions. Both qualitative and quantitative evaluations also demonstrate that the proposed method obtains better performance compared with conventional random walker method and state-of-the-art segmentation methods in terms of the overlap score and F-measure.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3