Urocortin I Protects against Myocardial Ischemia/Reperfusion Injury by Sustaining Respiratory Function and Cardiolipin Content via Mitochondrial ATP-Sensitive Potassium Channel Opening

Author:

Liu Wei1ORCID,Huang Liping2ORCID,Liu Xue3ORCID,Zhu Li4ORCID,Gu Yan5,Tian Wei6ORCID,Zhang Lin1,Deng Shengli1ORCID,Yu Tian7ORCID

Affiliation:

1. Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, China

2. Department of Anesthesiology, Chengdu Fifth People’s Hospital affiliated to Chengdu University of TCM, 610000 Chengdu, China

3. Department of Anesthesiology, Affiliated Hospital of Qingdao University, 266000 Qingdao, China

4. Department of Anesthesiology, Second People’s Hospital of Xindu District, 610000 Chengdu, China

5. Department of Anesthesiology, Chongqing Health Centre for Women and Children, 404100 Chongqing, China

6. Department of Anesthesiology, People’s Hospital of Bozhou District, 563000 Zunyi, China

7. Department of Anesthesiology, Zunyi Medical University, 563000 Zunyi, China

Abstract

Objective. Our experiments were aimed at probing whether urocortin I postconditioning was beneficial for maintaining the mitochondrial respiratory function and inhibiting the surging of reactive oxygen species. In addition, our experiments also intended to reveal the relationships between urocortin I postconditioning and mitochondrial ATP-sensitive potassium channel. Methods. Langendorff and MPA perfusion systems were used to establish myocardial ischemia-reperfusion injury model and cardiomyocytes hypoxia-reoxygenation injury model in rats, respectively. Isolated hearts and cardiomyocytes were randomly divided into normal group, ischemia-reperfusion/hypoxia-reoxygenation group, urocortin I postconditioning group, and 5-hydroxysolanoic acid (5-HD)+urocortin I group. At the end of balance (T1) and reperfusion (T2), cardiac functions, mitochondrial state3 respiratory, respiratory control ratio, mitochondrial respiratory enzyme activity, and mitochondrial cardiolipin content were measured. Our experiments also observed the ultrastructure of myocardium. The changes of cardiomyocyte mitochondrial permeability transition pore, mitochondrial membrane potential, reactive oxygen species, expression of apoptosis protein, and cardiomyocytes activity were detected at the end of reoxygenation. Results. The cardiac functions, mitochondrial respiratory function, and enzyme activity of the normal group were better than other three groups at T2, and urocortin I postconditioning group was better than the IR group and 5-HD+urocortin I group. LVEDP, +dp/dtmax, mitochondrial respiratory function, and enzyme activity of IR group were worse than 5-HD+urocortin I group. Cardiolipin content of the normal group was higher than the other three groups at T2, urocortin I postconditioning group was higher than the IR group and 5-HD+urocortin I group, and 5-HD+urocortin I group was still higher than the IR group. The ultrastructure of the normal group maintained the most integrated than the other groups, IR group suffered the most serious damage, and ultrastructure of the urocortin I postconditioning group was better than the IR group and 5-HD+urocortin I group. At the end of reoxygenation, activity of mitochondrial permeability transition pore and generation of reactive oxygen species of normal group were lower than the other groups, HR group and 5-HD+urocortin I group were higher than the urocortin I postconditioning group, and 5-HD+urocortin I group was still higher than the urocortin I postconditioning group. Normal group had the highest level of mitochondrial membrane potential at the end of reoxygenation, and the urocortin I postconditioning group was higher than the HR group and 5-HD+urocortin I group. The normal group had the lowest expression level of Bax and the highest expression level of Bcl-2 at the end of reoxygenation. Urocortin I postconditioning group had lower Bax expression but higher Bcl-2 expression than the HR and 5-HD+urocortin I group. Accordingly, the normal group had the highest activity of cardiomyocytes, and the urocortin I postconditioning group was higher than the HR group and 5-HD+urocortin I group. Conclusions. Urocortin I postconditioning can protect the activity of cardiomyocytes after hypoxia-reoxygenation injury, improve the mitochondrial respiratory function, and enhance the contractility of isolated heart after myocardial ischemia-reperfusion injury. The alleviation of myocardial injury relates to the opening of mitochondrial ATP-sensitive potassium channel.

Funder

Foundation of Science and Technology of Guizhou Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3