A CT-Based Radiomics Nomogram Model for Differentiating Primary Malignant Melanoma of the Esophagus from Esophageal Squamous Cell Carcinoma

Author:

Shi Yan-Jie1ORCID,Zhu Hai-Tao1,Yan Shuo1,Li Xiao-Ting1,Zhang Xiao-Yan1,Sun Ying-Shi1ORCID

Affiliation:

1. Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China

Abstract

Objective. The diagnosis of primary malignant melanoma of the esophagus (PMME) before treatment is essential for clinical decision-making. However, PMME may be misdiagnosed as esophageal squamous cell carcinoma (ESCC) sometimes. This research is aimed at devising a radiomics nomogram model of CT for distinguishing PMME from ESCC. Methods. In this retrospective analysis, 122 individuals with proven pathologically PMME ( n = 28 ) and ESCC ( n = 94 ) were registered from our hospital. PyRadiomics was applied to derive radiomics features from plain and enhanced CT images after resampling image into an isotropic resolution of 0.625 × 0.625 × 0.625 m m 3 . The diagnostic efficiency of the model was evaluated by an independent validation group. Results. For the purpose of differentiation between PMME and ESCC, a radiomics model was constructed using 5 radiomics features obtained from nonenhanced CT and 4 radiomics features derived from enhanced CT. A radiomics model including multiple radiomics features showed excellent discrimination efficiency with AUCs of 0.975 and 0.906 in the primary and validation cohorts, respectively. Then, a radiomics nomogram model was developed. The decision curve analysis has shown remarkable performance of this nomogram model for distinguishing PMME from ESCC. Conclusions. The proposed radiomics nomogram model based on CT could be used for distinguishing PMME from ESCC. Moreover, this model also contributed to helping clinicians determine an appropriate treatment strategy for esophageal neoplasms.

Funder

Beijing Municipal Administration of Hospitals

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3